当前位置:
X-MOL 学术
›
J. Build. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimization of mechanical properties and microstructure of marine soft soil solidified with industrial waste using the D-Optimal method
Journal of Building Engineering ( IF 6.7 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.jobe.2024.111566 Yajun Liu, Ke Wu, Yang Zheng, Haijun Lu, Wenli Liu, Heng Zhang, YinDong Sun
Journal of Building Engineering ( IF 6.7 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.jobe.2024.111566 Yajun Liu, Ke Wu, Yang Zheng, Haijun Lu, Wenli Liu, Heng Zhang, YinDong Sun
Marine soft soils, characterized by high water content and low strength, present significant challenges to foundation stability. These soils often lead to settlement and uneven deformation, posing risks to infrastructure safety. This study tackles these challenges and promotes industrial waste utilization by developing a novel curing material for marine soft soils. The material consists of ground granulated blast furnace slag (GGBS), phosphogypsum (PG), and calcium carbide slag (CCS), and is compared to ordinary Portland cement (OPC). A D-optimal design was employed to establish regression equations for unconfined compressive strength (UCS) at 7 and 28 days. The interactions between factors were analyzed to optimize the mix ratio. The effects of different curing ages on the unconfined compressive strength, modulus of elasticity, moisture content, and pH of GPCOR solidified soft soil and cement solidified soil were investigated. The microstructure of the solidified soils was analyzed using SEM, XRD, FTIR, and BET techniques. The results indicated that the optimal GPC ratio was GGBS: PG: CCS = 64.81: 20.00: 15.19. After 28 days, GPCOR solidified soil exhibited superior UCS (4.48 MPa), 1.47 times greater than that of OPC solidified soil, and a deformation modulus 2.04 times higher. Furthermore, GPCOR exhibited a denser microstructure with smaller average pore sizes, improved durability, and better water retention than OPC. These findings underscore the potential of GPC as a sustainable alternative to conventional cement for reinforcing marine soft soils, promoting both soil stabilization and industrial waste resource utilization.
中文翻译:
使用 D-Optimal 方法优化工业废弃物固化的海洋软土的力学性能和微观结构
海相软土以含水率高、强度低为特征,对地基稳定性提出了重大挑战。这些土壤通常会导致沉降和不均匀变形,对基础设施安全构成风险。本研究通过开发一种用于海洋软土的新型固化材料来应对这些挑战并促进工业废物的利用。该材料由磨碎的粒化高炉矿渣 (GGBS)、磷石膏 (PG) 和电石渣 (CCS) 组成,并与普通波特兰水泥 (OPC) 进行比较。采用 D 最优设计建立 7 天和 28 天无侧限抗压强度 (UCS) 的回归方程。分析因素之间的交互作用以优化混合比。研究了不同养护年龄对 GPCOR 固化软土和水泥固化土的无侧限抗压强度、弹性模量、含水率和 pH 值的影响。使用 SEM、XRD、FTIR 和 BET 技术分析固化土的微观结构。结果表明,最佳 GPC 比值为 GGBS: PG: CCS = 64.81: 20.00: 15.19。28 d后,GPCOR固化土表现出优异的UCS(4.48 MPa),是OPC固化土的1.47倍,变形模量高2.04倍。此外,与 OPC 相比,GPCOR 表现出更致密的微观结构、更小的平均孔径、更高的耐用性和更好的保水性。这些发现强调了 GPC 作为传统水泥的可持续替代品的潜力,用于加固海洋软土,促进土壤稳定和工业废物资源化。
更新日期:2024-12-18
中文翻译:
使用 D-Optimal 方法优化工业废弃物固化的海洋软土的力学性能和微观结构
海相软土以含水率高、强度低为特征,对地基稳定性提出了重大挑战。这些土壤通常会导致沉降和不均匀变形,对基础设施安全构成风险。本研究通过开发一种用于海洋软土的新型固化材料来应对这些挑战并促进工业废物的利用。该材料由磨碎的粒化高炉矿渣 (GGBS)、磷石膏 (PG) 和电石渣 (CCS) 组成,并与普通波特兰水泥 (OPC) 进行比较。采用 D 最优设计建立 7 天和 28 天无侧限抗压强度 (UCS) 的回归方程。分析因素之间的交互作用以优化混合比。研究了不同养护年龄对 GPCOR 固化软土和水泥固化土的无侧限抗压强度、弹性模量、含水率和 pH 值的影响。使用 SEM、XRD、FTIR 和 BET 技术分析固化土的微观结构。结果表明,最佳 GPC 比值为 GGBS: PG: CCS = 64.81: 20.00: 15.19。28 d后,GPCOR固化土表现出优异的UCS(4.48 MPa),是OPC固化土的1.47倍,变形模量高2.04倍。此外,与 OPC 相比,GPCOR 表现出更致密的微观结构、更小的平均孔径、更高的耐用性和更好的保水性。这些发现强调了 GPC 作为传统水泥的可持续替代品的潜力,用于加固海洋软土,促进土壤稳定和工业废物资源化。