当前位置: X-MOL 学术Ind. Eng. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Nanoemulsion Engineering through Continuous Ultrasonication and Integrated Machine Learning Algorithms
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-12-23 , DOI: 10.1021/acs.iecr.4c02489
Diksha Vats, Vimal Kumar

Ultrasonic flow reactors of modest size have become increasingly favored by researchers due to their utility as a valuable medium for investigating and regulating the operating mechanism of ultrasound technology. As a result, these reactors are employed for both research and a variety of applications in chemical, biological, and pharmaceutical processes, predominantly on laboratory scales and occasionally on pilot scales. Herein, an ultrasonic continuous-flow cell assembly (UCF) is utilized for the formulation of oil-in-water nanoemulsions (o/w NEs). The setup provides efficient energy input, inducing strong cavitation for effective droplet fragmentation and ensuring continuous o/w NEs production. The emulsification process is optimized by adjusting parameters (amplitude, pulse control mode, processing time, oil-to-surfactant ratio (OSR), and stability) supported by machine learning-based data analysis. At unit OSR, Dz-avg measures 124 nm, compared to 832 nm at OSR 12. At the optimal OSR, NE remains stable for 50 days; at higher OSR, coalescence and Ostwald ripening instabilities are observed. Optimized OSR is found to be 4 at optimal ultrasonic conditions. Higher surfactant concentration reduced Dz-avg, while increased oil concentration raised Dz-avg. A significant decrease in Dz-avg is observed up to 459 J/mL energy density, thereafter Dz-avg declined slowly. The Dz-avg prediction, modeled with energy density, exhibited a strong power law fit and is applicable for both scaling up and adjusting Dz-avg. This study proposes a standard process for formulating o/w NEs through an efficient continuous emulsification method. It offers valuable insights into optimizing emulsion formulation via ultrasonic cavitation techniques, contributing to scalable production in diverse industrial sectors.

中文翻译:


通过连续超声处理和集成机器学习算法增强纳米乳剂工程



中等尺寸的超声波流动反应器越来越受到研究人员的青睐,因为它们是研究和调节超声技术运行机制的宝贵介质。因此,这些反应器主要用于化学、生物和制药工艺的研究和各种应用,主要是实验室规模,偶尔也用于中试规模。在此,超声连续流通池组件 (UCF) 用于配制水包油纳米乳液 (o/w NEs)。该装置提供高效的能量输入,诱导强空化以实现有效的液滴碎裂,并确保连续的 o/w NEs 生产。通过调整基于机器学习的数据分析支持的参数(振幅、脉冲控制模式、加工时间、油与表面活性剂的比例 (OSR) 和稳定性)来优化乳化过程。在单位 OSR 下,Dz-avg 的测量值为 124 nm,而在 OSR 12 处为 832 nm。在最佳 OSR 下,NE 保持稳定 50 天;在较高的 OSR 下,观察到聚结和 Ostwald 成熟不稳定性。在最佳超声条件下,优化的 OSR 为 4。较高的表面活性剂浓度降低了 Dz-avg,而增加的油浓度提高了 Dz-avg。观察到 Dz-avg 显著降低,能量密度高达 459 J/mL,此后 Dz-avg 缓慢下降。以能量密度建模的 Dz-avg 预测表现出很强的幂律拟合,适用于放大和调整 Dz-avg。本研究提出了一种通过高效连续乳化法配制 o/w NEs 的标准工艺。 它为通过超声空化技术优化乳液配方提供了有价值的见解,有助于在不同工业领域实现规模化生产。
更新日期:2024-12-23
down
wechat
bug