当前位置: X-MOL 学术Geophys. Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crowdsourced Data Reveal Shortcomings in Precipitation Phase Products for Rain and Snow Partitioning
Geophysical Research Letters ( IF 4.6 ) Pub Date : 2024-12-23 , DOI: 10.1029/2024gl112853
Guo Yu, Keith S. Jennings, Benjamin J. Hatchett, Anne W. Nolin, Nayoung Hur, Meghan Collins, Anne Heggli, Sonia Tonino, Monica M. Arienzo

Reanalysis products support our understanding of how the precipitation phase influences hydrology across scales. However, a lack of validation data hinders the evaluation of a reanalysis-estimated precipitation phase. In this study, we used a novel dataset from the Mountain Rain or Snow (MRoS) citizen science project to compare 39,680 MRoS observations from January 2020 to July 2023 across the conterminous United States (CONUS) to assess three precipitation phase products. These products included the Global Precipitation Measurement (GPM) mission Integrated Multi-satellitE Retrievals for GPM (IMERG), the Modern-Era Retrospective Analysis for Research and Applications (MERRA-2), and the North American Land Data Assimilation System (NLDAS-2). The overall critical success indices for detecting rainfall (snowfall) for IMERG, MERRA-2, and NLDAS-2 were 0.51 (0.79), 0.49 (0.77), and 0.54 (0.53), respectively. These indices show that IMERG and MERRA-2 reasonably classify snowfall, whereas NLDAS-2 overestimates rainfall. All products performed poorly in detecting subfreezing rainfall and snowfall above 2°C. Therefore, crowdsourced data provides a unique validation source to improve the capabilities of reanalysis products.

中文翻译:


众包数据揭示了雨雪分区的降水阶段产品中的缺点



再分析产品有助于我们了解降水阶段如何影响不同尺度的水文。然而,缺乏验证数据阻碍了对再分析估计的降水阶段的评估。在这项研究中,我们使用了来自山地雨雪 (MRoS) 公民科学项目的新数据集来比较 2020 年 1 月至 2023 年 7 月美国本土 (CONUS) 的 39,680 次 MRoS 观测,以评估三个降水阶段产品。这些产品包括全球降水测量 (GPM) 任务 GPM 综合多卫星检索 (IMERG)、用于研究和应用的现代回顾性分析 (MERRA-2) 和北美陆地数据同化系统 (NLDAS-2)。IMERG 、 MERRA-2 和 NLDAS-2 检测降雨 (降雪) 的总体关键成功指数分别为 0.51 (0.79) 、 0.49 (0.77) 和 0.54 (0.53)。这些指数表明,IMERG 和 MERRA-2 对降雪进行了合理的分类,而 NLDAS-2 高估了降雨量。所有产品在检测低于冰点的降雨和高于 2°C 的降雪方面表现不佳。 因此,众包数据提供了唯一的验证来源,以提高再分析产品的功能。
更新日期:2024-12-23
down
wechat
bug