当前位置: X-MOL 学术Geophys. Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
L-Band InSAR Snow Water Equivalent Retrieval Uncertainty Increases With Forest Cover Fraction
Geophysical Research Letters ( IF 4.6 ) Pub Date : 2024-12-22 , DOI: 10.1029/2024gl111708
R. Bonnell, K. Elder, D. McGrath, H. P. Marshall, B. Starr, N. Adebisi, R. T. Palomaki, Z. Hoppinen

There is a pressing need for global monitoring of snow water equivalent (SWE) at high spatiotemporal resolution, and L-band (1–2 GHz) interferometric synthetic aperture radar (InSAR) holds promise. However, the technique has not seen extensive evaluation in forests. We evaluated this technique across varying forest canopy conditions using eight InSAR pairs collected at the Fraser Experimental Forest, Colorado, USA by NASA UAVSAR during the 10-week NASA SnowEx 2021 Campaign. Compared with in situ measurements, we found root mean squared errors (RMSEs) of 14–17 mm for SWE changes in forest cover fractions (FCF) < 0.40, but RMSEs increased to 33–40 mm at FCF > 0.50. Statistical distributions between normalized lidar snow depths and normalized UAVSAR SWE were similar at FCF < 0.5, but diverged at FCF > 0.50. Thus, the upcoming NISAR L-band satellite has strong potential for global snowpack monitoring, including below sparse to moderate forest cover.

中文翻译:


L 波段 InSAR 雪水等效检索不确定性随森林覆盖分数的增加而增加



迫切需要以高时空分辨率对雪水当量 (SWE) 进行全球监测,而 L 波段 (1–2 GHz) 干涉合成孔径雷达 (InSAR) 前景广阔。然而,该技术尚未在森林中得到广泛评估。在为期 10 周的 NASA SnowEx 2021 活动期间,我们使用 NASA UAVSAR 在美国科罗拉多州弗雷泽实验森林收集的 8 对 InSAR 评估了这项技术在不同森林冠层条件下的这种技术。与原位测量相比,我们发现森林覆盖分数 (FCF) 的 SWE 变化的均方根误差 (RMSE) < 0.40,但在 FCF > 0.50 时,RMSE 增加到 33-40 mm。归一化激光雷达积雪深度和归一化 UAVSAR SWE 之间的统计分布在 FCF < 0.5 时相似,但在 FCF > 0.50 时出现分歧。因此,即将推出的 NISAR L 波段卫星具有强大的全球积雪监测潜力,包括稀疏到中等森林覆盖率以下的积雪监测。
更新日期:2024-12-23
down
wechat
bug