当前位置:
X-MOL 学术
›
Future Gener. Comput. Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimizing mobile blockchain networks: A game theoretical approach to cooperative multi-terminal computation
Future Generation Computer Systems ( IF 6.2 ) Pub Date : 2024-12-13 , DOI: 10.1016/j.future.2024.107669 Lin Pan, Fengrui Chen, Yan Ding, Yunan Zhai, Liyuan Zhang, Jia Zhao
Future Generation Computer Systems ( IF 6.2 ) Pub Date : 2024-12-13 , DOI: 10.1016/j.future.2024.107669 Lin Pan, Fengrui Chen, Yan Ding, Yunan Zhai, Liyuan Zhang, Jia Zhao
Facing the computational challenges in mobile devices within blockchain networks, particularly the scarcity and underutilization of computational resources, this paper introduces the CAGE Framework: a novel architecture based on cooperative game theory within alliance blockchains. Designed to optimize computational resource allocation across multiple mobile terminals, CAGE Framework leverages a tri-layer structure – comprising the Blockchain Network Layer, User Network Layer, and Distributed Collaborative Computing Layer – to facilitate efficient resource sharing and task scheduling. Through intelligent contracts, the framework automatically aggregates user demands, utilizing the InterPlanetary File System (IPFS) for data storage, thereby enhancing privacy protection and blockchain data throughput. Validated on the Hyperledger Fabric platform and benchmarked against state-of-the-art approaches, CAGE demonstrates superior transaction throughput, reduced latency, and enhanced resource efficiency. The core strategy, dubbed CAGE, is predicated on cooperative gaming, aiming to maximize user satisfaction by balancing energy consumption, computational load, and resource allocation multi-objectively. Experiments reveal a notable improvement in system load balancing (by 51%) and a significant reduction in energy consumption (by 62%), affirming the framework’s efficacy in addressing computational resource deficiencies both within and outside the alliance under low energy and balanced load conditions. The CAGE Framework not only charts a new path for computational resource optimization in mobile blockchain networks but also lays a theoretical and practical foundation for the furtherance of blockchain technology application and optimization.
中文翻译:
优化移动区块链网络:一种协作式多终端计算的博弈论方法
面对区块链网络中移动设备的计算挑战,特别是计算资源的稀缺和未充分利用,本文介绍了 CAGE 框架:一种基于联盟区块链内合作博弈论的新型架构。CAGE 框架旨在优化跨多个移动终端的计算资源分配,利用由区块链网络层、用户网络层和分布式协作计算层组成的三层结构来促进高效的资源共享和任务调度。通过智能合约,该框架自动聚合用户需求,利用星际文件系统 (IPFS) 进行数据存储,从而增强隐私保护和区块链数据吞吐量。CAGE 在 Hyperledger Fabric 平台上进行了验证,并与最先进的方法进行了基准测试,展示了卓越的交易吞吐量、更低的延迟和更高的资源效率。其核心策略被称为 CAGE,以合作博弈为基础,旨在通过多目标平衡能耗、计算负载和资源分配来最大限度地提高用户满意度。实验显示,系统负载平衡有了显著的改善(51%),能耗显著降低了(62%),这肯定了该框架在解决低能耗和平衡负载条件下联盟内外的计算资源不足方面的功效。CAGE 框架不仅为移动区块链网络中的计算资源优化开辟了新的路径,也为区块链技术的应用和优化奠定了理论和实践基础。
更新日期:2024-12-13
中文翻译:
优化移动区块链网络:一种协作式多终端计算的博弈论方法
面对区块链网络中移动设备的计算挑战,特别是计算资源的稀缺和未充分利用,本文介绍了 CAGE 框架:一种基于联盟区块链内合作博弈论的新型架构。CAGE 框架旨在优化跨多个移动终端的计算资源分配,利用由区块链网络层、用户网络层和分布式协作计算层组成的三层结构来促进高效的资源共享和任务调度。通过智能合约,该框架自动聚合用户需求,利用星际文件系统 (IPFS) 进行数据存储,从而增强隐私保护和区块链数据吞吐量。CAGE 在 Hyperledger Fabric 平台上进行了验证,并与最先进的方法进行了基准测试,展示了卓越的交易吞吐量、更低的延迟和更高的资源效率。其核心策略被称为 CAGE,以合作博弈为基础,旨在通过多目标平衡能耗、计算负载和资源分配来最大限度地提高用户满意度。实验显示,系统负载平衡有了显著的改善(51%),能耗显著降低了(62%),这肯定了该框架在解决低能耗和平衡负载条件下联盟内外的计算资源不足方面的功效。CAGE 框架不仅为移动区块链网络中的计算资源优化开辟了新的路径,也为区块链技术的应用和优化奠定了理论和实践基础。