当前位置:
X-MOL 学术
›
J. Materiomics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient visible-light-driven alcohol oxidation coupled hydrogen production on 0D/0D “n-NiWO4/p-CdS” S-scheme heterojunction
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-12-22 , DOI: 10.1016/j.jmat.2024.100997 Yanfang Tao, Sujuan Zhang, Jinfeng Zhang, Zhongliao Wang, Gaoli Chen, Xiuzhen Zheng, Shifu Chen
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-12-22 , DOI: 10.1016/j.jmat.2024.100997 Yanfang Tao, Sujuan Zhang, Jinfeng Zhang, Zhongliao Wang, Gaoli Chen, Xiuzhen Zheng, Shifu Chen
The theory of S-scheme transfer mechanism have significant implications for exploring the mechanism of photocatalytic carrier migration and its intrinsic dynamics. Modeled NiWO4/CdS heterojunction photocatalyst (referred to as NWO/CS) was synthesized using a simple hydrothermal method and applied for alcohol oxidation coupled with H2 production. Systematically investigates the factors contributing to its enhanced performance and the internal charge transfer mechanisms. The 28% NWO/CS composite exhibited the highest activity, with a H2 production and the aldehyde generation rates of 16.08 mmol·g−1·h−1 and 16.88 mmol·g−1·h−1, which are about 320 times higher than those of NiWO4 (0.05 mmol·g−1·h−1 and 0.06 mmol·g−1·h−1) and 16 times higher than that of CdS (1.09 mmol·g−1·h−1 and 1.12 mmol·g−1·h−1). Based on the in-situ XPS, transient surface photovoltage, theoretical calculations, and other physicochemical characterization results, we have confirmed that the built-in electric field formed at the interface and the transfer of photogenerated charges follows the S-scheme mechanism between relative “n-NiWO4” and relative “p-CdS” are the key factors that promote efficient charge separation and significantly enhance the subsequent reaction activity. This work provides a theoretical basis for improving photocatalytic performance and understanding photocatalytic mechanisms.
中文翻译:
在 0D/0D “n-NiWO4/p-CdS” S 型异质结上高效可见光驱动醇氧化耦合制氢
S 型转移机制理论对于探索光催化载流子迁移的机制及其内在动力学具有重要意义。使用简单的水热法合成了建模的 NiWO 4 /CdS 异质结光催化剂(简称 NWO/CS),并应用于醇氧化与氢 2 生产耦合。系统地研究了导致其性能增强的因素和内部电荷转移机制。28% NWO/CS复合材料表现出最高的活性,产氢 2 量和醛生成速率分别为16.08 mmol·g −1 ·h −1 和16.88 mmol·g −1 ·h −1 ,比 4 NiWO高约320倍(0.05 mmol·g −1 ·h −1 和0.06 mmol·g −1 ·h −1 ),比CdS(1.09 mmol·g −1 ·h −1 和1.12 mmol·g −1 ·h −1 )高16倍).基于原位XPS、瞬态表面光电压、理论计算和其他物理化学表征结果,我们证实了界面处形成的内置电场和光生电荷的转移遵循相对“n-NiWO 4 ”和相对“p-CdS”之间的S型机制,是促进高效电荷分离和显著提高后续反应活性的关键因素。这项工作为提高光催化性能和理解光催化机理提供了理论基础。
更新日期:2024-12-22
中文翻译:
在 0D/0D “n-NiWO4/p-CdS” S 型异质结上高效可见光驱动醇氧化耦合制氢
S 型转移机制理论对于探索光催化载流子迁移的机制及其内在动力学具有重要意义。使用简单的水热法合成了建模的 NiWO 4 /CdS 异质结光催化剂(简称 NWO/CS),并应用于醇氧化与氢 2 生产耦合。系统地研究了导致其性能增强的因素和内部电荷转移机制。28% NWO/CS复合材料表现出最高的活性,产氢 2 量和醛生成速率分别为16.08 mmol·g −1 ·h −1 和16.88 mmol·g −1 ·h −1 ,比 4 NiWO高约320倍(0.05 mmol·g −1 ·h −1 和0.06 mmol·g −1 ·h −1 ),比CdS(1.09 mmol·g −1 ·h −1 和1.12 mmol·g −1 ·h −1 )高16倍).基于原位XPS、瞬态表面光电压、理论计算和其他物理化学表征结果,我们证实了界面处形成的内置电场和光生电荷的转移遵循相对“n-NiWO 4 ”和相对“p-CdS”之间的S型机制,是促进高效电荷分离和显著提高后续反应活性的关键因素。这项工作为提高光催化性能和理解光催化机理提供了理论基础。