当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Understanding Polymorphism in Organic Semiconductor Thin Films through Nanoconfinement
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2014-11-26 , DOI: 10.1021/ja507179d Ying Diao 1 , Kristina M. Lenn 2 , Wen-Ya Lee 1 , Martin A. Blood-Forsythe 3 , Jie Xu 4 , Yisha Mao 1 , Yeongin Kim 1 , Julia A. Reinspach 1 , Steve Park 1 , Alán Aspuru-Guzik 3 , Gi Xue 4 , Paulette Clancy 2 , Zhenan Bao 1 , Stefan C. B. Mannsfeld 5
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2014-11-26 , DOI: 10.1021/ja507179d Ying Diao 1 , Kristina M. Lenn 2 , Wen-Ya Lee 1 , Martin A. Blood-Forsythe 3 , Jie Xu 4 , Yisha Mao 1 , Yeongin Kim 1 , Julia A. Reinspach 1 , Steve Park 1 , Alán Aspuru-Guzik 3 , Gi Xue 4 , Paulette Clancy 2 , Zhenan Bao 1 , Stefan C. B. Mannsfeld 5
Affiliation
Understanding crystal polymorphism is a long-standing challenge relevant to many fields, such as pharmaceuticals, organic semiconductors, pigments, food, and explosives. Controlling polymorphism of organic semiconductors (OSCs) in thin films is particularly important given that such films form the active layer in most organic electronics devices and that dramatic changes in the electronic properties can be induced even by small changes in the molecular packing. However, there are very few polymorphic OSCs for which the structure-property relationships have been elucidated so far. The major challenges lie in the transient nature of metastable forms and the preparation of phase-pure, highly crystalline thin films for resolving the crystal structures and evaluating the charge transport properties. Here we demonstrate that the nanoconfinement effect combined with the flow-enhanced crystal engineering technique is a powerful and likely material-agnostic method to identify existing polymorphs in OSC materials and to prepare the individual pure forms in thin films at ambient conditions. With this method we prepared high quality crystal polymorphs and resolved crystal structures of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), including a new polymorph discovered via in situ grazing incidence X-ray diffraction and confirmed by molecular mechanic simulations. We further correlated molecular packing with charge transport properties using quantum chemical calculations and charge carrier mobility measurements. In addition, we applied our methodology to a [1]benzothieno[3,2-b][1]1benzothiophene (BTBT) derivative and successfully stabilized its metastable form.
中文翻译:
通过纳米限制了解有机半导体薄膜的多态性
了解晶体多态性是与许多领域相关的长期挑战,例如制药、有机半导体、颜料、食品和炸药。控制薄膜中有机半导体 (OSC) 的多态性尤为重要,因为此类薄膜形成了大多数有机电子器件中的活性层,并且即使分子堆积的微小变化也会引起电子特性的剧烈变化。然而,到目前为止,很少有多态性 OSCs 的结构 - 性质关系已被阐明。主要挑战在于亚稳态形式的瞬态性质以及用于解析晶体结构和评估电荷传输特性的相纯、高度结晶的薄膜的制备。在这里,我们证明纳米限制效应与流动增强晶体工程技术相结合是一种强大且可能与材料无关的方法,用于识别 OSC 材料中现有的多晶型物,并在环境条件下制备薄膜中的单个纯形式。使用这种方法,我们制备了 6,13-双(三异丙基甲硅烷基乙炔基)并五苯(TIPS-并五苯)的高质量晶体多晶型物并解析了晶体结构,包括通过原位掠入射 X 射线衍射发现并通过分子力学模拟证实的新多晶型物。我们使用量子化学计算和电荷载流子迁移率测量进一步将分子堆积与电荷传输特性相关联。此外,我们将我们的方法应用于 [1] 苯并噻吩 [3,
更新日期:2014-11-26
中文翻译:
通过纳米限制了解有机半导体薄膜的多态性
了解晶体多态性是与许多领域相关的长期挑战,例如制药、有机半导体、颜料、食品和炸药。控制薄膜中有机半导体 (OSC) 的多态性尤为重要,因为此类薄膜形成了大多数有机电子器件中的活性层,并且即使分子堆积的微小变化也会引起电子特性的剧烈变化。然而,到目前为止,很少有多态性 OSCs 的结构 - 性质关系已被阐明。主要挑战在于亚稳态形式的瞬态性质以及用于解析晶体结构和评估电荷传输特性的相纯、高度结晶的薄膜的制备。在这里,我们证明纳米限制效应与流动增强晶体工程技术相结合是一种强大且可能与材料无关的方法,用于识别 OSC 材料中现有的多晶型物,并在环境条件下制备薄膜中的单个纯形式。使用这种方法,我们制备了 6,13-双(三异丙基甲硅烷基乙炔基)并五苯(TIPS-并五苯)的高质量晶体多晶型物并解析了晶体结构,包括通过原位掠入射 X 射线衍射发现并通过分子力学模拟证实的新多晶型物。我们使用量子化学计算和电荷载流子迁移率测量进一步将分子堆积与电荷传输特性相关联。此外,我们将我们的方法应用于 [1] 苯并噻吩 [3,