当前位置:
X-MOL 学术
›
Autom. Constr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Delamination detection in concrete decks using numerical simulation and UAV-based infrared thermography with deep learning
Automation in Construction ( IF 9.6 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.autcon.2024.105940
Dyala Aljagoub, Ri Na, Chongsheng Cheng
Automation in Construction ( IF 9.6 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.autcon.2024.105940
Dyala Aljagoub, Ri Na, Chongsheng Cheng
The potential of concrete bridge delamination detection using infrared thermography (IRT) has grown with technological advancements. However, most current studies require an external input (subjective threshold), reducing the detection's objectivity and accuracy. Deep learning enables automation and streamlines data processing, potentially enhancing accuracy. Yet, data scarcity poses a challenge to deep learning applications, hindering their performance. This paper aims to develop a deep learning approach using supervised learning object detection models with extended data from real and simulated images. The numerical simulation image supplementation seeks to eliminate the limited data barrier by creating a comprehensive dataset, potentially improving model performance and robustness. Mask R-CNN and YOLOv5 were tested across various training data and model parameter combinations to develop an optimal detection model. Lastly, when tested, the model showed a remarkable ability to detect delamination of varying properties accurately compared to currently employed IRT techniques.
中文翻译:
使用数值模拟和基于无人机的红外热成像和深度学习技术对混凝土桥面进行分层检测
随着技术的进步,使用红外热成像 (IRT) 检测混凝土桥梁分层的潜力也越来越大。然而,目前的大多数研究都需要外部输入(主观阈值),这降低了检测的客观性和准确性。深度学习可实现自动化并简化数据处理,从而有可能提高准确性。然而,数据稀缺对深度学习应用程序构成了挑战,阻碍了它们的性能。本文旨在开发一种深度学习方法,使用监督学习对象检测模型,以及来自真实和模拟图像的扩展数据。数值仿真图像补充旨在通过创建全面的数据集来消除有限的数据障碍,从而有可能提高模型性能和鲁棒性。在各种训练数据和模型参数组合中测试了 Mask R-CNN 和 YOLOv5,以开发最佳检测模型。最后,在测试时,与目前采用的 IRT 技术相比,该模型显示出准确检测不同特性分层的显着能力。
更新日期:2024-12-19
中文翻译:

使用数值模拟和基于无人机的红外热成像和深度学习技术对混凝土桥面进行分层检测
随着技术的进步,使用红外热成像 (IRT) 检测混凝土桥梁分层的潜力也越来越大。然而,目前的大多数研究都需要外部输入(主观阈值),这降低了检测的客观性和准确性。深度学习可实现自动化并简化数据处理,从而有可能提高准确性。然而,数据稀缺对深度学习应用程序构成了挑战,阻碍了它们的性能。本文旨在开发一种深度学习方法,使用监督学习对象检测模型,以及来自真实和模拟图像的扩展数据。数值仿真图像补充旨在通过创建全面的数据集来消除有限的数据障碍,从而有可能提高模型性能和鲁棒性。在各种训练数据和模型参数组合中测试了 Mask R-CNN 和 YOLOv5,以开发最佳检测模型。最后,在测试时,与目前采用的 IRT 技术相比,该模型显示出准确检测不同特性分层的显着能力。