当前位置:
X-MOL 学术
›
Autom. Constr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Automated reality capture for indoor inspection using BIM and a multi-sensor quadruped robot
Automation in Construction ( IF 9.6 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.autcon.2024.105930
Zhengyi Chen, Changhao Song, Boyu Wang, Xingyu Tao, Xiao Zhang, Fangzhou Lin, Jack C.P. Cheng
Automation in Construction ( IF 9.6 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.autcon.2024.105930
Zhengyi Chen, Changhao Song, Boyu Wang, Xingyu Tao, Xiao Zhang, Fangzhou Lin, Jack C.P. Cheng
This paper presents a real-time, cost-effective navigation and localization framework tailored for quadruped robot-based indoor inspections. A 4D Building Information Model is utilized to generate a navigation map, supporting robotic pose initialization and path planning. The framework integrates a cost-effective, multi-sensor SLAM system that combines inertial-corrected 2D laser scans with fused laser and visual-inertial SLAM. Additionally, a deep-learning-based object recognition model is trained for multi-dimensional reality capture, enhancing comprehensive indoor element inspection. Validated on a quadruped robot equipped with an RGB-D camera, IMU, and 2D LiDAR in an academic setting, the framework achieved collision-free navigation, reduced localization drift by 71.77 % compared to traditional SLAM methods, and provided accurate large-scale point cloud reconstruction with 0.119-m precision. Furthermore, the object detection model attained mean average precision scores of 73.7 % for 2D detection and 62.9 % for 3D detection.
中文翻译:
使用 BIM 和多传感器四足机器人进行室内检查的自动现实捕捉
本文提出了一种实时、经济高效的导航和定位框架,专为基于四足机器人的室内检查量身定制。利用 4D 建筑信息模型生成导航地图,支持机器人姿态初始化和路径规划。该框架集成了一个经济高效的多传感器 SLAM 系统,该系统将惯性校正 2D 激光扫描与融合激光和视觉惯性 SLAM 相结合。此外,基于深度学习的物体识别模型经过训练,用于多维现实捕捉,从而增强了全面的室内元素检查。在学术环境中,该框架在配备 RGB-D 摄像头、IMU 和 2D LiDAR 的四足机器人上进行了验证,实现了无碰撞导航,与传统 SLAM 方法相比,定位漂移减少了 71.77%,并提供了精度为 0.119 m 的准确大规模点云重建。此外,对象检测模型在 2D 检测方面获得了 73.7% 的平均精度分数,在 3D 检测方面获得了 62.9% 的平均精度分数。
更新日期:2024-12-19
中文翻译:

使用 BIM 和多传感器四足机器人进行室内检查的自动现实捕捉
本文提出了一种实时、经济高效的导航和定位框架,专为基于四足机器人的室内检查量身定制。利用 4D 建筑信息模型生成导航地图,支持机器人姿态初始化和路径规划。该框架集成了一个经济高效的多传感器 SLAM 系统,该系统将惯性校正 2D 激光扫描与融合激光和视觉惯性 SLAM 相结合。此外,基于深度学习的物体识别模型经过训练,用于多维现实捕捉,从而增强了全面的室内元素检查。在学术环境中,该框架在配备 RGB-D 摄像头、IMU 和 2D LiDAR 的四足机器人上进行了验证,实现了无碰撞导航,与传统 SLAM 方法相比,定位漂移减少了 71.77%,并提供了精度为 0.119 m 的准确大规模点云重建。此外,对象检测模型在 2D 检测方面获得了 73.7% 的平均精度分数,在 3D 检测方面获得了 62.9% 的平均精度分数。