当前位置: X-MOL 学术Comput. Methods Appl. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Uncertainty quantification and propagation for multiscale materials systems with agglomeration and structural anomalies
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-12-16 , DOI: 10.1016/j.cma.2024.117531
Yigitcan Comlek, Satyajit Mojumder, Anton van Beek, Prajakta Prabhune, Alberto Ciampaglia, Daniel W. Apley, L. Catherine Brinson, Wing Kam Liu, Wei Chen

Advancements in manufacturing technologies have enabled material system design optimization across multiple length scales. However, microstructural anomalies (defects) that are present at different scales have not been considered comprehensively enough for systems to be robust to manufacturing variations and uncertainties. Addressing these anomalies through uncertainty quantification and propagation frameworks can help in understanding their effects on a part’s response to design engineered components that can withstand various sources of uncertainty. However, the high-dimensional design space of multiscale material systems can make these frameworks computationally intensive and data-demanding. This work presents an efficient bottom-up hierarchical uncertainty quantification and propagation framework bridging multiple scales to establish a design allowable range for material systems at the part-scale. Specifically, the hierarchical sampling framework integrates (i) an innovative microstructure characterization and reconstruction method, (ii) a mechanistic reduced-order model for fast property predictions in high-dimensional microstructural design spaces, and (iii) an efficient copula-based sampling across multiple scales that reduces the sampling budget by 95%. We demonstrate the framework on an additively manufactured polymer nanocomposite material system that exhibits agglomeration defects formed due to attractive forces between nanoparticles at the microscale and structural variations caused by the voids resulting from different processing conditions at the mesoscale.

中文翻译:


具有团聚和结构异常的多尺度材料系统的不确定性量化和传播



制造技术的进步使跨多个长度尺度的材料系统设计优化成为可能。然而,存在于不同尺度上的微观结构异常(缺陷)尚未得到足够全面的考虑,因此系统无法应对制造变化和不确定性。通过不确定性量化和传播框架解决这些异常情况,有助于了解它们对零件对设计工程组件的响应的影响,这些组件可以承受各种不确定性来源。然而,多尺度材料系统的高维设计空间会使这些框架成为计算密集型和数据要求。这项工作提出了一个高效的自下而上的分层不确定性量化和传播框架,该框架桥接了多个尺度,以建立零件尺度上材料系统的设计允许范围。具体来说,分层采样框架集成了 (i) 一种创新的微观结构表征和重建方法,(ii) 一种用于在高维微观结构设计空间中快速预测属性的机制降阶模型,以及 (iii) 跨多个尺度的基于 copula 的高效采样,可将采样预算减少 95%。我们在增材制造的聚合物纳米复合材料系统上展示了该框架,该系统表现出由于纳米颗粒之间的吸引力在微观尺度上形成的团聚缺陷,以及在中尺度上由不同加工条件产生的空隙引起的结构变化。
更新日期:2024-12-16
down
wechat
bug