当前位置: X-MOL 学术J. Phys. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Machine Learning Mapping Approach for Computing Spin Relaxation Dynamics
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-12-21 , DOI: 10.1021/acs.jpclett.4c03293
Mohammad Shakiba, Adam B. Philips, Jochen Autschbach, Alexey V. Akimov

In this work, a machine learning mapping approach for predicting the properties of atomistic systems is reported. Within this approach, the atomic orbital overlap, density, or Kohn-Sham (KS) Fock matrix elements obtained at a low level of theory such as extended tight-binding have been used as input features to predict the electric field gradient (EFG) tensors at a higher level of theory such as those obtained with hybrid functionals. It is shown that the machine-learning-predicted EFG tensors can be used to compute spin relaxation rates of several ions in aqueous solutions. From only a fraction of data used in direct calculation, one can predict the quadrupolar isotropic spin relaxation rates with good accuracy, achieving relative errors between about 2–8% for different ions.

中文翻译:


用于计算自旋松弛动力学的机器学习映射方法



在这项工作中,报道了一种用于预测原子系统特性的机器学习映射方法。在这种方法中,在低理论水平(如扩展紧密结合)中获得的原子轨道重叠、密度或 Kohn-Sham (KS) Fock 矩阵元素已被用作输入特征,以预测更高理论水平的电场梯度 (EFG) 张量,例如通过混合泛函获得的张量。结果表明,机器学习预测的 EFG 张量可用于计算水溶液中多个离子的自旋弛豫率。仅从直接计算中使用的一小部分数据中,就可以很好地预测四极各向同性自旋弛豫速率,不同离子的相对误差约为 2-8%。
更新日期:2024-12-21
down
wechat
bug