Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Trapped-ion quantum simulation of electron transfer models with tunable dissipation
Science Advances ( IF 11.7 ) Pub Date : 2024-12-20 , DOI: 10.1126/sciadv.ads8011 Visal So, Midhuna Duraisamy Suganthi, Abhishek Menon, Mingjian Zhu, Roman Zhuravel, Han Pu, Peter G. Wolynes, José N. Onuchic, Guido Pagano
Science Advances ( IF 11.7 ) Pub Date : 2024-12-20 , DOI: 10.1126/sciadv.ads8011 Visal So, Midhuna Duraisamy Suganthi, Abhishek Menon, Mingjian Zhu, Roman Zhuravel, Han Pu, Peter G. Wolynes, José N. Onuchic, Guido Pagano
Electron transfer is at the heart of many fundamental physical, chemical, and biochemical processes essential for life. The exact simulation of these reactions is often hindered by the large number of degrees of freedom and by the essential role of quantum effects. Here, we experimentally simulate a paradigmatic model of molecular electron transfer using a multispecies trapped-ion crystal, where the donor-acceptor gap, the electronic and vibronic couplings, and the bath relaxation dynamics can all be controlled independently. By manipulating both the ground-state and optical qubits, we observe the real-time dynamics of the spin excitation, measuring the transfer rate in several regimes of adiabaticity and relaxation dynamics. Our results provide a testing ground for increasingly rich models of molecular excitation transfer processes that are relevant for molecular electronics and light-harvesting systems.
中文翻译:
具有可调耗散的电子转移模型的囚禁离子量子模拟
电子转移是生命所必需的许多基本物理、化学和生化过程的核心。这些反应的精确模拟经常受到大量自由度和量子效应的重要作用的阻碍。在这里,我们使用多物种囚禁离子晶体实验模拟了分子电子转移的范式模型,其中供体-受体间隙、电子和振动耦合以及浴弛豫动力学都可以独立控制。通过操纵基态和光学量子比特,我们观察自旋激发的实时动力学,测量绝热和弛豫动力学的几种状态下的传输速率。我们的结果为日益丰富的分子激发转移过程模型提供了试验场,这些模型与分子电子学和光捕获系统相关。
更新日期:2024-12-20
中文翻译:
具有可调耗散的电子转移模型的囚禁离子量子模拟
电子转移是生命所必需的许多基本物理、化学和生化过程的核心。这些反应的精确模拟经常受到大量自由度和量子效应的重要作用的阻碍。在这里,我们使用多物种囚禁离子晶体实验模拟了分子电子转移的范式模型,其中供体-受体间隙、电子和振动耦合以及浴弛豫动力学都可以独立控制。通过操纵基态和光学量子比特,我们观察自旋激发的实时动力学,测量绝热和弛豫动力学的几种状态下的传输速率。我们的结果为日益丰富的分子激发转移过程模型提供了试验场,这些模型与分子电子学和光捕获系统相关。