npj Computational Materials ( IF 9.4 ) Pub Date : 2024-12-20 , DOI: 10.1038/s41524-024-01471-8 Liu Chang, Hiromasa Tamaki, Tomoyasu Yokoyama, Kensuke Wakasugi, Satoshi Yotsuhashi, Minoru Kusaba, Artem R. Oganov, Ryo Yoshida
Stable or metastable crystal structures of assembled atoms can be predicted by finding the global or local minima of the energy surface within a broad space of atomic configurations. Generally, this requires repeated first-principles energy calculations, which is often impractical for large crystalline systems. Here, we present significant progress toward solving the crystal structure prediction problem: we performed noniterative, single-shot screening using a large library of virtually created crystal structures with a machine-learning energy predictor. This shotgun method (ShotgunCSP) has two key technical components: transfer learning for accurate energy prediction of pre-relaxed crystalline states, and two generative models based on element substitution and symmetry-restricted structure generation to produce promising and diverse crystal structures. First-principles calculations were performed only to generate the training samples and to refine a few selected pre-relaxed crystal structures. The ShotunCSP method is less computationally intensive than conventional methods and exhibits exceptional prediction accuracy, reaching 93.3% in benchmark tests with 90 different crystal structures.