当前位置: X-MOL 学术npj Comput. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity
npj Computational Materials ( IF 9.4 ) Pub Date : 2024-12-19 , DOI: 10.1038/s41524-024-01469-2
Hui Zheng, Eric Sivonxay, Rasmus Christensen, Max Gallant, Ziyao Luo, Matthew McDermott, Patrick Huck, Morten M. Smedskjær, Kristin A. Persson

Non-crystalline materials exhibit unique properties that make them suitable for various applications in science and technology, ranging from optical and electronic devices and solid-state batteries to protective coatings. However, data-driven exploration and design of non-crystalline materials is hampered by the absence of a comprehensive database covering a broad chemical space. In this work, we present the largest computed non-crystalline structure database to date, generated from systematic and accurate ab initio molecular dynamics (AIMD) calculations. We also show how the database can be used in simple machine-learning models to connect properties to composition and structure, here specifically targeting ionic conductivity. These models predict the Li-ion diffusivity with speed and accuracy, offering a cost-effective alternative to expensive density functional theory (DFT) calculations. Furthermore, the process of computational quenching non-crystalline structures provides a unique sampling of out-of-equilibrium structures, energies, and force landscape, and we anticipate that the corresponding trajectories will inform future work in universal machine learning potentials, impacting design beyond that of non-crystalline materials. In addition, combining diffusion trajectories from our dataset with models that predict liquidus viscosity and melting temperature could be utilized to develop models for predicting glass-forming ability.

更新日期:2024-12-20
down
wechat
bug