当前位置:
X-MOL 学术
›
J. Cheminfom.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interface-aware molecular generative framework for protein–protein interaction modulators
Journal of Cheminformatics ( IF 7.1 ) Pub Date : 2024-12-20 , DOI: 10.1186/s13321-024-00930-0 Jianmin Wang, Jiashun Mao, Chunyan Li, Hongxin Xiang, Xun Wang, Shuang Wang, Zixu Wang, Yangyang Chen, Yuquan Li, Kyoung Tai No, Tao Song, Xiangxiang Zeng
Journal of Cheminformatics ( IF 7.1 ) Pub Date : 2024-12-20 , DOI: 10.1186/s13321-024-00930-0 Jianmin Wang, Jiashun Mao, Chunyan Li, Hongxin Xiang, Xun Wang, Shuang Wang, Zixu Wang, Yangyang Chen, Yuquan Li, Kyoung Tai No, Tao Song, Xiangxiang Zeng
Protein–protein interactions (PPIs) play a crucial role in numerous biochemical and biological processes. Although several structure-based molecular generative models have been developed, PPI interfaces and compounds targeting PPIs exhibit distinct physicochemical properties compared to traditional binding pockets and small-molecule drugs. As a result, generating compounds that effectively target PPIs, particularly by considering PPI complexes or interface hotspot residues, remains a significant challenge. In this work, we constructed a comprehensive dataset of PPI interfaces with active and inactive compound pairs. Based on this, we propose a novel molecular generative framework tailored to PPI interfaces, named GENiPPI. Our evaluation demonstrates that GENiPPI captures the implicit relationships between the PPI interfaces and the active molecules, and can generate novel compounds that target these interfaces. Moreover, GENiPPI can generate structurally diverse novel compounds with limited PPI interface modulators. To the best of our knowledge, this is the first exploration of a structure-based molecular generative model focused on PPI interfaces, which could facilitate the design of PPI modulators. The PPI interface-based molecular generative model enriches the existing landscape of structure-based (pocket/interface) molecular generative model. This study introduces GENiPPI, a protein-protein interaction (PPI) interface-aware molecular generative framework. The framework first employs Graph Attention Networks to capture atomic-level interaction features at the protein complex interface. Subsequently, Convolutional Neural Networks extract compound representations in voxel and electron density spaces. These features are integrated into a Conditional Wasserstein Generative Adversarial
Network, which trains the model to generate compound representations targeting PPI interfaces. GENiPPI effectively captures the relationship between PPI interfaces and active/inactive compounds. Furthermore, in fewshot molecular generation, GENiPPI successfully generates compounds comparable to known disruptors. GENiPPI provides an efficient tool for structure-based design of PPI modulators.
更新日期:2024-12-20