当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical study of the Ni(OH)2/MnO2 bilayer film obtained by cathodic electrodeposition for application in energy storage devices
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-12-20 , DOI: 10.1016/j.jallcom.2024.178229
M.R. Cunha, L. Aguilera, R.R. Passos, L.A. Pocrifka

This study focuses on the preparation and characterization of a Ni(OH)2/MnO2 bilayer film, synthesized using the cathodic electrodeposition method on a stainless steel substrate. The formation of the bilayer was confirmed through X-Ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Scanning Electron Microscopy (SEM) provided insights into the morphology of the film, while the electrochemical behavior was investigated using Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD), and Electrochemical Impedance Spectroscopy (EIS). The bilayer material exhibited a significantly higher specific capacity of 331.1 C g⁻¹ at a current density of 0.5 A g⁻¹ , surpassing the capacities of individual Ni(OH)2 (221.6 C g⁻¹) and MnO2 (180.3 C g⁻¹) films. Notably, the bilayer film demonstrated excellent cycling stability, retaining 97.2 % of its specific capacity after 10,000 cycles at a scan rate of 100 mV s−1. The enhanced electrochemical performance is attributed to the synergistic interaction between the layers, indicating promising potential for applications in energy storage devices, such as supercapacitors. This work underscores the viability of Ni(OH)2/MnO2 bilayer films for advancing energy storage technologies.

中文翻译:


阴极电沉积法制备的 Ni(OH)2/MnO2 双层膜在储能器件中的应用



本研究的重点是在不锈钢衬底上使用阴极电沉积方法合成的 Ni(OH)2/MnO2 双层薄膜的制备和表征。通过 X 射线衍射 (XRD) 和能量色散光谱 (EDS) 证实了双层的形成。扫描电子显微镜 (SEM) 提供了对薄膜形态的见解,而使用循环伏安法 (CV)、恒电流充放电 (GCD) 和电化学阻抗谱 (EIS) 研究了电化学行为。在 0.5 A g⁻¹ 的电流密度下,双层材料表现出 331.1 C g⁻¹ 的明显更高比容量,超过了单个 Ni(OH)2 (221.6 C g⁻¹) 和 MnO2 (180.3 C g⁻¹) 薄膜的容量。值得注意的是,双层薄膜表现出优异的循环稳定性,在 100 mV s-1 的扫描速率下循环 10,000 次后仍保留 97.2% 的比容量。增强的电化学性能归因于各层之间的协同相互作用,表明在超级电容器等储能器件中的应用前景广阔。这项工作强调了 Ni(OH)2/MnO2 双层薄膜在推进储能技术方面的可行性。
更新日期:2024-12-20
down
wechat
bug