当前位置: X-MOL 学术Inorg. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cage-Based Metal–Organic Framework Featuring a Double-Yolk Core–Shell U6L3@U18L14 Structure for Iodine Capture
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-12-20 , DOI: 10.1021/acs.inorgchem.4c04490
Shuang Deng, Xianghe Kong, Xuan Fu, Zhi-Wei Huang, Zhi-Heng Zhou, Lei Mei, Ji-Pan Yu, Li-Yong Yuan, Yan-Qiu Zhu, Nan-Nan Wang, Kong-Qiu Hu, Wei-Qun Shi

Cage-based MOFs, with their customizable chemical environments and precisely controllable nanospaces, show great potential for the selective adsorption of guest molecules with specific structures. In this work, we have constructed a novel cage-based MOF [(CH3)2NH2]2[(UO2)2(TMTTA)]·11.5DMF·2H2O (IHEP-51), utilizing a triazine derivative poly(carboxylic acid), 4,4′,4″-(((1,3,5-triazine-2,4,6-triyl)tris(((4-carboxycyclohexyl)methyl)azanediyl))tris(methylene))tribenzoic acid (H6TMTTA), as an organic ligand and uranyl as a metal node. The 2-fold interpenetrated (3,6,6)-connected framework of IHEP-51 features two types of supramolecular cage structures: the Pyrgos[2]cage U6L3 and the huge cage U18L14. They are further assembled into a double-yolk core–shell U6L3@U18L14 structure, making it suitable for I2 capture. The maximum adsorption capacities of IHEP-51 for iodine in solution and gaseous iodine are 420.4 and 1561.2 mg·g–1, respectively. XPS, Raman spectra, single-crystal X-ray diffraction, and DFT calculations reveal that the adsorbed iodine is located inside the U6L3 Pyrgos[2]cage in the form of I3, thus resulting in the formation of a (I3)2@U6L3@U18L14 ternary core–shell structure.
更新日期:2024-12-20
down
wechat
bug