当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale Modeling of Heat Conduction in a Hydroxyethyl Cellulose/Boron Nitride Composite Realizing Ultrahigh Thermal Conductivity via a “Moisture-Activated” Strategy
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-12-19 , DOI: 10.1021/acsami.4c20264
Chenggong Zhao, Chen Jiang, Bingheng Li, Yuanzheng Tang, Xinfeng Wu, Changqing Liu, Yan He, Wei Yu, Yifan Li

Polymer-based thermally conductive composites are widely used in microelectronics for heat dissipation and packaging, for which the filler arrangement and the filler/matrix interfacial thermal resistance (ITR) are key factors limiting superior thermal conduction realization. This work reveals the effects of filler modification and orientation on thermal duction in the boron nitride (BN)/hydroxyethyl cellulose (HEC) through multiscale simulation approaches. Nonequilibrium molecular dynamics (NEMD) identifies that the thermal conductivity of the BN molecule is not size-dependent and proves that thermal resistance is dramatically reduced after hydroxylation modification (BNOH). Finite element simulation (FEM) reveals that maintaining a proper tilt of BN may improve both the cross-plane and in-plane thermal conductivity of the composite. Experimentally, BNOH/HEC composites with high self-viscosity are prepared via a “moisture-activated” strategy, for which the introduction of BNOH and wet hot pressing contribute to the thermal resistance reduction and filler orientation, respectively. The in-plane thermal conductivity reaches 30.64 W/mK with a cross-plane thermal conductivity of 5.06 W/mK. The films show good adaptability to surface morphology with the thermal resistance decreasing to 1.42 K·cm2/W. Practical thermal management demonstrates that the incorporation of BNOH/HEC facilitates a 15.05 °C reduction of the LED Al substrate compared to the common composite film.
更新日期:2024-12-20
down
wechat
bug