当前位置:
X-MOL 学术
›
Mater. Today Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Insights into the Enhanced ORR Activity of FeN4-Embedded Graphene Through Interface Interactions with Metal Substrates: Electronic vs. Geometric Descriptors
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.mtphys.2024.101633 Silu Li, Donghai Wu, Lulu Gao, Jiahang Li, Gang Tang, Zaiping Zeng, Dongwei Ma
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.mtphys.2024.101633 Silu Li, Donghai Wu, Lulu Gao, Jiahang Li, Gang Tang, Zaiping Zeng, Dongwei Ma
Recent experiments have revealed that the oxygen reduction reaction (ORR) performances of transition-metal and nitrogen codoped carbon (TM-N-C) can be drastically improved by interfacing with TM nanoparticles. However, the key factors that derive from this emerging composite SAC and can well correlate with the boosted ORR activity is still unclear. Herein, taking the FeN4-embedded graphene (FeN4-G) as example, we built a series of model heterointerface systems, by placing FeN4-G on various common TM surfaces (denoted as FeN4-M), to explore the enhancement origin. Based on extensive density functional theory calculations, we find that all the FeN4-M systems exhibit higher ORR activity than the free-standing FeN4-G, and even most FeN4-M systems are much more active than the Pt(111) surface. Furthermore, for the descriptor construction, however there is no apparent correlation between the ORR activity and the electronic structures of Fe active centers, the ones that are closely relevant with ORR activity of the free-standing FeN4-G. Instead, interestingly the interlayer distance between FeN4-G and the underlying metal substrates, an intrinsic geometric structure parameter, has been identified to linearly correlate with the binding strengths of ORR intermediates and ORR overpotential well. Present work provides a novel insight into the structure-activity relationship of the composite SACs consisting of Fe-N-C and metal nanoparticles.
更新日期:2024-12-20