当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Kinetics of Volatile and Nonvolatile Halide Perovskite Devices: The Conductance-Activated Quasi-Linear Memristor (CALM) Model
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-12-19 , DOI: 10.1021/acs.jpclett.4c03132 Agustín Bou, Cedric Gonzales, Pablo P. Boix, Yana Vaynzof, Antonio Guerrero, Juan Bisquert
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-12-19 , DOI: 10.1021/acs.jpclett.4c03132 Agustín Bou, Cedric Gonzales, Pablo P. Boix, Yana Vaynzof, Antonio Guerrero, Juan Bisquert
Memristors stand out as promising components in the landscape of memory and computing. Memristors are generally defined by a conductance mechanism containing a state variable that imparts a memory effect. The current–voltage cycling causes transitions of conductance, which are determined by different physical mechanisms, such as the formation of conducting filaments in an insulating surrounding. Here, we provide a unified description of the set and reset processes using a conductance-activated quasi-linear memristor (CALM) model with a unique voltage-dependent relaxation time of the memory variable. We focus on halide perovskite memristors and their intersection with neuroscience-inspired computing. We show that the modeling approach adeptly replicates the experimental traits of both volatile and nonvolatile memristors. Its versatility extends across various device materials and configurations, as W/SiGe/a-Si/Ag, Si/SiO2/Ag, and SrRuO3/Cr-SrZrO3/Au memristors, capturing nuanced behaviors such as scan rate and upper vertex dependence. The model also describes the response to sequences of voltage pulses that cause synaptic potentiation effects. This model is a potent tool for comprehending and probing the dynamical response of memristors by indicating the relaxation properties that control observable responses.
中文翻译:
挥发性和非易失性卤化物钙钛矿器件的动力学:电导激活准线性忆阻器 (CALM) 模型
忆阻器在内存和计算领域是很有前途的组件。忆阻器通常由电导机制定义,该机制包含一个赋予记忆效应的状态变量。电流-电压循环导致电导转变,这是由不同的物理机制决定的,例如在绝缘环境中形成导电丝。在这里,我们使用电导激活的准线性忆阻器 (CALM) 模型提供了设置和重置过程的统一描述,该模型具有存储变量的独特电压相关弛豫时间。我们专注于卤化物钙钛矿忆阻器及其与神经科学启发的计算的交叉点。我们表明,建模方法巧妙地复制了易失性和非易失性忆阻器的实验特性。它的多功能性延伸到各种器件材料和配置,如 W/SiGe/a-Si/Ag、Si/SiO2/Ag 和 SrRuO3/Cr-SrZrO3/Au 忆阻器,捕捉扫描速率和上顶点依赖性等细微行为。该模型还描述了对引起突触增强效应的电压脉冲序列的响应。该模型通过指示控制可观察响应的弛豫特性,是理解和探测忆阻器动力学响应的有力工具。
更新日期:2024-12-19
中文翻译:
挥发性和非易失性卤化物钙钛矿器件的动力学:电导激活准线性忆阻器 (CALM) 模型
忆阻器在内存和计算领域是很有前途的组件。忆阻器通常由电导机制定义,该机制包含一个赋予记忆效应的状态变量。电流-电压循环导致电导转变,这是由不同的物理机制决定的,例如在绝缘环境中形成导电丝。在这里,我们使用电导激活的准线性忆阻器 (CALM) 模型提供了设置和重置过程的统一描述,该模型具有存储变量的独特电压相关弛豫时间。我们专注于卤化物钙钛矿忆阻器及其与神经科学启发的计算的交叉点。我们表明,建模方法巧妙地复制了易失性和非易失性忆阻器的实验特性。它的多功能性延伸到各种器件材料和配置,如 W/SiGe/a-Si/Ag、Si/SiO2/Ag 和 SrRuO3/Cr-SrZrO3/Au 忆阻器,捕捉扫描速率和上顶点依赖性等细微行为。该模型还描述了对引起突触增强效应的电压脉冲序列的响应。该模型通过指示控制可观察响应的弛豫特性,是理解和探测忆阻器动力学响应的有力工具。