当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting Anionic Redox Reactions of Li‐Rich Cathodes through Lattice Oxygen and Li‐Ion Kinetics Modulation in Working All‐Solid‐State Batteries
Advanced Materials ( IF 27.4 ) Pub Date : 2024-12-19 , DOI: 10.1002/adma.202414195 Shuo Sun, Chen‐Zi Zhao, Gao‐Yao Liu, Shu‐Cheng Wang, Zhong‐Heng Fu, Wei‐Jin Kong, Jin‐Liang Li, Xiang Chen, Xiangyu Zhao, Qiang Zhang
Advanced Materials ( IF 27.4 ) Pub Date : 2024-12-19 , DOI: 10.1002/adma.202414195 Shuo Sun, Chen‐Zi Zhao, Gao‐Yao Liu, Shu‐Cheng Wang, Zhong‐Heng Fu, Wei‐Jin Kong, Jin‐Liang Li, Xiang Chen, Xiangyu Zhao, Qiang Zhang
The use of lithium‐rich manganese‐based oxides (LRMOs) as the cathode in all‐solid‐state batteries (ASSBs) holds great potential for realizing high energy density over 600 Wh kg−1 . However, their implementation is significantly hindered by the sluggish kinetics and inferior reversibility of anionic redox reactions of oxygen in ASSBs. In this contribution, boron ions (B3+ ) doping and 3D Li2 B4 O7 (LBO) ionic networks construction are synchronously introduced into LRMO materials (LBO‐LRMO) by mechanochemical and subsequent thermally driven diffusion method. Owing to the high binding energy of B─O and high‐efficiency ionic networks of nanoscale LBO complex in cathode materials, the as‐prepared LBO‐LRMO displays highly reversible and activated anionic redox reactions in ASSBs. The designed LBO‐LRMO interwoven structure enables robust phase and LBO‐LRMO|solid electrolyte interface stability during cycling (over 80% capacity retention after 2000 cycles at 1.0 C with a voltage range of 2.2–4.7 V vs Li/Li+ ). This contribution affords a fundamental understanding of the anionic redox reactions for LRMO in ASSBs and offers an effective strategy to realize highly activated and reversible oxygen redox reactions in LRMO‐based ASSBs.
中文翻译:
在工作的全固态电池中通过晶格氧和锂离子动力学调制促进富锂阴极的阴离子氧化还原反应
在全固态电池 (ASSB) 中使用富锂锰基氧化物 (LRMO) 作为阴极,具有实现超过 600 Wh kg-1 的高能量密度的巨大潜力。然而,ASSBs 中氧的阴离子氧化还原反应的动力学缓慢和可逆性较差,严重阻碍了它们的实施。在这个贡献中,硼离子 (B3+) 掺杂和 3D Li2B4O7 (LBO) 离子网络构建通过机械化学和随后的热驱动扩散方法同步引入 LRMO 材料 (LBO-LRMO) 中。由于 B─O 的高结合能和纳米级 LBO 复合物在正极材料中的高效离子网络,所制备的 LBO-LRMO 在 ASSBs 中表现出高度可逆和活化的阴离子氧化还原反应。设计的 LBO-LRMO 交织结构可在循环过程中实现稳健的相和 LBO-LRMO|固体电解质界面稳定性(在 1.0 C 下循环 2000 次后,电压范围为 2.2–4.7 V vs Li/Li+,容量保持率超过 80%)。这一贡献为了解 ASSB 中 LRMO 的阴离子氧化还原反应提供了基本信息,并为在基于 LRMO 的 ASSB 中实现高度活化和可逆的氧氧化还原反应提供了一种有效的策略。
更新日期:2024-12-19
中文翻译:
在工作的全固态电池中通过晶格氧和锂离子动力学调制促进富锂阴极的阴离子氧化还原反应
在全固态电池 (ASSB) 中使用富锂锰基氧化物 (LRMO) 作为阴极,具有实现超过 600 Wh kg-1 的高能量密度的巨大潜力。然而,ASSBs 中氧的阴离子氧化还原反应的动力学缓慢和可逆性较差,严重阻碍了它们的实施。在这个贡献中,硼离子 (B3+) 掺杂和 3D Li2B4O7 (LBO) 离子网络构建通过机械化学和随后的热驱动扩散方法同步引入 LRMO 材料 (LBO-LRMO) 中。由于 B─O 的高结合能和纳米级 LBO 复合物在正极材料中的高效离子网络,所制备的 LBO-LRMO 在 ASSBs 中表现出高度可逆和活化的阴离子氧化还原反应。设计的 LBO-LRMO 交织结构可在循环过程中实现稳健的相和 LBO-LRMO|固体电解质界面稳定性(在 1.0 C 下循环 2000 次后,电压范围为 2.2–4.7 V vs Li/Li+,容量保持率超过 80%)。这一贡献为了解 ASSB 中 LRMO 的阴离子氧化还原反应提供了基本信息,并为在基于 LRMO 的 ASSB 中实现高度活化和可逆的氧氧化还原反应提供了一种有效的策略。