当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Achieving Enhanced High‐Temperature Performance of Lithium‐Ion Batteries via Salt‐Inspired Interfacial Engineering
Small ( IF 13.0 ) Pub Date : 2024-12-19 , DOI: 10.1002/smll.202409810
Seung Hee Han, Donguk Kim, Gihoon Lee, Kyungeun Baek, Seok Ju Kang, Bumsuk Son, Jaewook Shin, Nam‐Soon Choi

Electrolyte additive engineering enables the creation of long‐lasting interfacial layers that protect electrodes, thus extending the lifetime of high‐energy lithium‐ion batteries employing Ni‐rich Li[Ni1–x–yCoxMny]O2 (NCM) cathodes. However, batteries face various limitations if existing additives are employed alone without an appropriate combination. Herein, the study reports the development of a molecular‐engineered salt‐type multifunctional additive, lithium bis(phosphorodifluoridate) triethylammonium ethenesulfonate (LiPENS), that leverages the different functionalities of phosphorous, nitrogen, and sulfur‐embedded motifs, as well as the classical additive vinylene carbonate (VC), to construct protective interfacial layers. The thermally and electrochemically reinforced solid electrolyte interphase (SEI), achieved through the combined use of LiPENS and VC, conserves the lithiation level of the Graphite (Gr) anode with minimal SEI growth, whereas the inorganic‐rich cathode‐electrolyte interface (CEI) alleviates the irrevocable phase transition and mechanical fragility of the LiNi0.8Co0.1Mn0.1O2 (NCM811) secondary particles. The multifunctional roles of LiPENS are demonstrated in an NCM811/Gr full cell, showing a discharge capacity of 190.7 mAh g−1 with an enhanced capacity retention of 91.8% at 1 C and 45 °C after 300 cycles. This advancement in electrolyte additive engineering based on salt structures can lead to more efficient, reliable, and commercially viable batteries for high‐energy applications, including electric vehicles and portable electronics.

中文翻译:


通过盐启发的界面工程实现增强的锂离子电池高温性能



电解质增材制造技术能够形成保护电极的持久界面层,从而延长采用富镍 Li[Ni 1–x–y Co x Mn y ]O 2 (NCM) 阴极的高能锂离子电池的使用寿命。然而,如果单独使用现有的添加剂而不进行适当的组合,电池将面临各种限制。在此,该研究报告了一种分子工程盐型多功能添加剂的开发,即双(二氟酸磷酸盐)三乙基乙磺酸铵锂 (LiPENS),它利用磷、氮和硫包埋基序的不同官能团,以及经典的添加剂碳酸乙烯酯 (VC),来构建保护界面层。通过结合使用 LiPENS 和 VC 实现的热化学和电化学增强固体电解质界面 (SEI) 保持了石墨 (Gr) 阳极的锂化水平,并且 SEI 生长最小,而富含无机物的阴极电解质界面 (CEI) 减轻了 LiNi 0.8 Co 0.1 Mn 0.1 O 2 的不可逆相变和机械脆性(NCM811) 次级颗粒。LiPENS 的多功能作用在 NCM811/Gr 全电池中得到证明,放电容量为 190.7 mAh g −1 ,在 1 C 和 45 °C 下循环 300 次后容量保持率提高 91.8%。基于盐结构的电解质添加剂工程的这一进步可以为高能量应用(包括电动汽车和便携式电子产品)带来更高效、更可靠和商业上可行的电池。
更新日期:2024-12-19
down
wechat
bug