当前位置:
X-MOL 学术
›
Biomass Bioenergy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Increasing energy density in bio-oil through pyrolysis of Schizochytrium limacinum microalgae using a dual-catalyst bed and sunlight as the heating source
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.biombioe.2024.107548 Raíssa Aparecida da Silveira Rossi, Luiz Gustavo Martins Vieira, Carla Eponina Hori, Marcos Antonio de Souza Barrozo
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.biombioe.2024.107548 Raíssa Aparecida da Silveira Rossi, Luiz Gustavo Martins Vieira, Carla Eponina Hori, Marcos Antonio de Souza Barrozo
The utilization of renewable energy sources in the pyrolysis process for bio-oil production has garnered renewed attention. Solar pyrolysis presents a promising avenue for harnessing solar energy, transforming biomass energy into a portable and storable fuel. However, the formation of undesirable components necessitates upgrading bio-oil before it can be effectively employed as a fuel. In this study, ex-situ catalytic solar pyrolysis of microalgae is conducted, employing Mg-Al hydrotalcite precursor and zeolite as catalysts. The impact of different catalyst ratios on Schizochytrium limacinum pyrolysis properties, product yields, and characteristics was investigated under solar radiation. The bio-oil produced in the solar pyrolysis presented highly desirable compounds as long-chain hydrocarbons (aliphatic and aromatic). The formation of these hydrocarbons was more favored at the highest reaction temperature of 750 °C, at a ratio of NiHTC/(NiHTC + NiHZSM-5] of 0.50 and under a ratio of catalysts/biomass of 4:1, a condition that also led to an aromatization of approximately 80 % of the hydrocarbons. Just as hydrocarbon production was benefited under these conditions, which also led to an energy recovery efficiency (ER S ) of approximately 65 %. These data represent 3357 g CO2 eq/GJ for the bio-oil of the present study compared to the 70331 g CO2 eq/GJ generated by fossil fuel usage, which can assist in reducing fuels' carbon footprint.
中文翻译:
利用双催化剂床和太阳光作为加热源,通过热解裂殖壶菌微藻来提高生物油中的能量密度
在热解过程中利用可再生能源生产生物油已重新引起关注。太阳能热解为利用太阳能提供了一种很有前途的途径,将生物质能转化为便携式和可储存的燃料。然而,不良成分的形成需要升级生物油,然后才能有效地用作燃料。在本研究中,采用 Mg-Al 水滑石前驱体和沸石作为催化剂,对微藻进行非原位催化太阳能热解。在太阳辐射下研究了不同催化剂比例对裂殖壶菌热解性能、产物收率和特性的影响。太阳能热解产生的生物油呈长链碳氢化合物(脂肪族和芳香族)等非常理想的化合物。在 750 °C 的最高反应温度下,NiHTC/(NiHTC + NiHZSM-5] 的比例为 0.50,催化剂/生物质的比例为 4:1)时,这些碳氢化合物的形成更有利,该条件也导致约 80% 的碳氢化合物芳构化。正如在这些条件下碳氢化合物生产受益一样,这也导致了大约 65% 的能源回收效率 (ERS)。这些数据表明,本研究生物油的二氧化碳当量/吉焦耳为3357克,而使用化石燃料产生的二氧化碳当量为70331克/吉焦耳,这有助于减少燃料的碳足迹。
更新日期:2024-12-12
中文翻译:
利用双催化剂床和太阳光作为加热源,通过热解裂殖壶菌微藻来提高生物油中的能量密度
在热解过程中利用可再生能源生产生物油已重新引起关注。太阳能热解为利用太阳能提供了一种很有前途的途径,将生物质能转化为便携式和可储存的燃料。然而,不良成分的形成需要升级生物油,然后才能有效地用作燃料。在本研究中,采用 Mg-Al 水滑石前驱体和沸石作为催化剂,对微藻进行非原位催化太阳能热解。在太阳辐射下研究了不同催化剂比例对裂殖壶菌热解性能、产物收率和特性的影响。太阳能热解产生的生物油呈长链碳氢化合物(脂肪族和芳香族)等非常理想的化合物。在 750 °C 的最高反应温度下,NiHTC/(NiHTC + NiHZSM-5] 的比例为 0.50,催化剂/生物质的比例为 4:1)时,这些碳氢化合物的形成更有利,该条件也导致约 80% 的碳氢化合物芳构化。正如在这些条件下碳氢化合物生产受益一样,这也导致了大约 65% 的能源回收效率 (ERS)。这些数据表明,本研究生物油的二氧化碳当量/吉焦耳为3357克,而使用化石燃料产生的二氧化碳当量为70331克/吉焦耳,这有助于减少燃料的碳足迹。