当前位置:
X-MOL 学术
›
Commun. Nonlinear Sci. Numer. Simul.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Balanced implicit two-step Maruyama methods for stochastic differential equations
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.cnsns.2024.108512 Quanwei Ren, Jiayi Liu, Yanyan He
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.cnsns.2024.108512 Quanwei Ren, Jiayi Liu, Yanyan He
This paper introduces balanced implicit two-step Maruyama methods for solving Itô stochastic differential equations. Such methods, compared to those corresponding standard linear two-step Maruyama methods, have better mean-square properties, which is confirmed by a comparison of the stability regions for some particular two-step Maruyama methods. Moreover, the convergence order is investigated which proves the convergence of the presented methods with the order 1 2 in the mean-square sense. Numerical results are reported to show the convergence properties and the stability properties of the balanced implicit two-step Maruyama methods. The stability analysis and numerical results show that the proposed methods are very promising methods for stiff stochastic differential equations.
中文翻译:
用于随机微分方程的平衡隐式两步 Maruyama 方法
本文介绍了求解 Itô 随机微分方程的平衡隐式两步 Maruyama 方法。与相应的标准线性两步 Maruyama 方法相比,这些方法具有更好的均方特性,这可以通过比较某些特定两步 Maruyama 方法的稳定性区域来证实。此外,研究了收敛阶数,证明了所提出的方法在均方意义上与 12 阶的收敛性。数值结果表明了平衡隐式两步 Maruyama 方法的收敛特性和稳定性特性。稳定性分析和数值结果表明,所提方法是非常有前途的刚性随机微分方程方法。
更新日期:2024-12-12
中文翻译:
用于随机微分方程的平衡隐式两步 Maruyama 方法
本文介绍了求解 Itô 随机微分方程的平衡隐式两步 Maruyama 方法。与相应的标准线性两步 Maruyama 方法相比,这些方法具有更好的均方特性,这可以通过比较某些特定两步 Maruyama 方法的稳定性区域来证实。此外,研究了收敛阶数,证明了所提出的方法在均方意义上与 12 阶的收敛性。数值结果表明了平衡隐式两步 Maruyama 方法的收敛特性和稳定性特性。稳定性分析和数值结果表明,所提方法是非常有前途的刚性随机微分方程方法。