当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photovoltaic-Driven Battery Deionization System for Efficient and Sustainable Seawater Desalination
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-12-19 , DOI: 10.1021/acs.est.4c11467 Xiaosong Gu, Wenfei Wei, Xuezhen Feng, Ranhao Wang, Songhe Yang, Zhenzhong Zeng, Hong Chen
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-12-19 , DOI: 10.1021/acs.est.4c11467 Xiaosong Gu, Wenfei Wei, Xuezhen Feng, Ranhao Wang, Songhe Yang, Zhenzhong Zeng, Hong Chen
Seawater desalination via electrochemical battery deionization (BDI) has shown significant potential for freshwater production. However, its widespread application has been limited by the high energy costs involved. To facilitate the commercialization of BDI technology, it is crucial to develop innovative integrated BDI systems that utilize sustainable energy sources and assess their practical performance for desalination of natural seawater. In this study, we construct the first photovoltaic-driven battery deionization system, termed PV-BDI, capable of continuously and simultaneously removing multiple ions from natural seawater. The system successfully produced freshwater with a total dissolved solids (TDS) level of 704 mg L–1, meeting the maximum acceptable TDS limits recommended by the World Health Organization (WHO) for drinking water standards, which specify a maximum TDS limit of 1000 mg L–1. The mass-specific energy consumption for salt removal to obtain drinking water from natural seawater via this system has been reduced to 0.036 kW·h kg–1, surpassing the performance of other state-of-the-art PV-driven electrochemical-based desalination technologies such as electrodialysis and capacitive deionization (0.068–2.100 kW·h kg–1). This work presents a pioneering proof-of-concept integrated PV-BDI system and demonstrates its practical performance for desalinating natural seawater, thereby laying the foundation for expanding BDI systems in the near future for environmentally friendly and sustainable industrial-scale seawater desalination.
中文翻译:
用于高效和可持续海水淡化的光伏驱动电池去离子系统
通过电化学电池去离子 (BDI) 进行的海水淡化已显示出淡水生产的巨大潜力。然而,由于所涉及的高能源成本,它的广泛应用受到了限制。为了促进 BDI 技术的商业化,开发利用可持续能源的创新集成 BDI 系统并评估其在天然海水淡化方面的实际性能至关重要。在这项研究中,我们构建了第一个光伏驱动的电池去离子系统,称为 PV-BDI,能够连续同时从天然海水中去除多个离子。该系统成功生产了总溶解固体 (TDS) 水平为 704 mg L–1 的淡水,符合世界卫生组织 (WHO) 关于饮用水标准建议的最大可接受 TDS 限值,该标准规定的最大 TDS 限值为 1000 mg L–1。通过该系统从天然海水中去除盐以获取饮用水的质量比能耗已降低到 0.036 kW·h kg–1,超过了其他最先进的光伏驱动的基于电化学的海水淡化技术的性能,如电渗析和电容去离子 (0.068–2.100 kW·h kg–1).这项工作提出了一种开创性的概念验证集成 PV-BDI 系统,并展示了其在天然海水淡化方面的实际性能,从而为在不久的将来扩展 BDI 系统以实现环保和可持续的工业规模海水淡化奠定了基础。
更新日期:2024-12-19
中文翻译:
用于高效和可持续海水淡化的光伏驱动电池去离子系统
通过电化学电池去离子 (BDI) 进行的海水淡化已显示出淡水生产的巨大潜力。然而,由于所涉及的高能源成本,它的广泛应用受到了限制。为了促进 BDI 技术的商业化,开发利用可持续能源的创新集成 BDI 系统并评估其在天然海水淡化方面的实际性能至关重要。在这项研究中,我们构建了第一个光伏驱动的电池去离子系统,称为 PV-BDI,能够连续同时从天然海水中去除多个离子。该系统成功生产了总溶解固体 (TDS) 水平为 704 mg L–1 的淡水,符合世界卫生组织 (WHO) 关于饮用水标准建议的最大可接受 TDS 限值,该标准规定的最大 TDS 限值为 1000 mg L–1。通过该系统从天然海水中去除盐以获取饮用水的质量比能耗已降低到 0.036 kW·h kg–1,超过了其他最先进的光伏驱动的基于电化学的海水淡化技术的性能,如电渗析和电容去离子 (0.068–2.100 kW·h kg–1).这项工作提出了一种开创性的概念验证集成 PV-BDI 系统,并展示了其在天然海水淡化方面的实际性能,从而为在不久的将来扩展 BDI 系统以实现环保和可持续的工业规模海水淡化奠定了基础。