当前位置: X-MOL 学术Phys. Chem. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanostructured bismuth ferrite nanoparticles: synthesis, characterization, electrical/magnetic properties and photocatalytic performance
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-12-19 , DOI: 10.1039/d4cp04515g
M. H. Ghozza, Ahmed T. Mosleh, Elbadawy A. Kamoun, Mahmoud Abdel-Aty, M. Alfiras, Mohamed Hafez Ahmed, Shawkat Alkhazaleh, V. Ganesh, H. Y. Zahran, Ibrahim S. Yahia

Nanostructured bismuth ferrite (BiFeO3) single-phase nanoparticles with 76.2% crystallinity and 100% perovskite structure were synthesized using a co-precipitation method. The X-ray diffraction pattern confirmed the perovskite structure of BFO, and Rietveld refinement demonstrated the presence of a triclinic structure with the P1 space group. The Scherrer and Williamson–Hall equations were used to calculate the crystallite size (63 and 83 nm, respectively) with a grain size of almost 246 nm and an activation energy of 0.53 eV. The accumulation of free charges at interfaces, which correlate with the sample bulk and the interface between the compound and electrode space-charge polarization, was the reason behind the high values of ε′. As the frequency increased up to 1000 Hz, both dielectric constant ε′ and dielectric loss ε′ fell quickly. In contrast, at high frequencies, the ε′ became more frequency-independent, notably when ε′ increased with a temperature of up to 423 K. The sample exhibited considerable soft ferromagnetic-like activity due to the acquired nanoscale structure that promotes spin coating in the BiFeO3 antiferromagnetic phase. The significant coercivity 2624.5 Oe provides each materials in permanent magnetic and transformers. Photocatalytic activity of the BiFeO3 nanocomposite under UVA-light irradiation was performed using Congo red dye. The maximum photocatalytic degradation efficiency after 200 min for CR was 66%. The exceptional electrical and magnetic characteristics of nanostructured BiFeO3 provide new possibilities for its use in potential technological applications, i.e., spintronics, data storage microelectronics, and water treatment.

中文翻译:


纳米结构铁氧体铋纳米颗粒:合成、表征、电/磁性能和光催化性能



采用共沉淀法合成了结晶度为 76.2% 且钙钛矿结构为 100% 的纳米结构铋铁氧体 (BiFeO3) 单相纳米颗粒。X 射线衍射图证实了 BFO 的钙钛矿结构,Rietveld 精修证明了存在具有 P1 空间群的三斜晶系结构。Scherrer 和 Williamson-Hall 方程用于计算晶粒尺寸(分别为 63 和 83 nm),晶粒尺寸接近 246 nm,活化能为 0.53 eV。自由电荷在界面处的积累,与样品块体以及化合物和电极空间电荷极化之间的界面相关,是 ε' 值高的原因。随着频率增加到 1000 Hz,介电常数 ε' 和介电损耗 ε' 都迅速下降。相比之下,在高频下,ε' 变得更加与频率无关,特别是当 ε' 随着温度高达 423 K 而增加时。由于获得的纳米级结构促进了 BiFeO3 反铁磁相中的旋涂,该样品表现出相当多的软铁磁性活性。显着的矫顽力 2624.5 Oe 为永磁和变压器中的每种材料提供。使用刚果红染料在 UVA 光照射下进行 BiFeO3 纳米复合材料的光催化活性。CR 在 200 min 后的最大光催化降解效率为 66%。 纳米结构 BiFeO3 卓越的电学和磁学特性为其在潜在技术应用中的应用提供了新的可能性,即自旋电子学、数据存储电子学和水处理。
更新日期:2024-12-19
down
wechat
bug