当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Suppressing Ionic-to-Electronic Conduction Transition on Cathode Interface Enables 4.4 V Poly(ethylene oxide)-Based All-Solid-State Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-18 , DOI: 10.1021/acsenergylett.4c02840 Zi-Xiang Kong, Zhe Xiong, Jian-Fang Wu, Jun Jin, Yuxiao Lin, Yunsong Li, Jilei Liu
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-18 , DOI: 10.1021/acsenergylett.4c02840 Zi-Xiang Kong, Zhe Xiong, Jian-Fang Wu, Jun Jin, Yuxiao Lin, Yunsong Li, Jilei Liu
The implementation of energy-dense poly(ethylene oxide) (PEO)-based all-solid-state lithium batteries is impeded by the limited working voltage and underexplored cathode interfacial reaction mechanism. Here, through analyzing interfacial resistances using the Wagner model, the change of the interfacial reaction parameter (k) is proposed to unveil the ionic-to-electronic conduction transition and kinetic formation mechanism of the cathode-electrolyte-interphase (CEI) under voltage ≥4.2 V, thereby constructing ionic conductor-dominated CEIs to enable 4.4 V batteries. With the open-circuit voltage ≥4.2 V, k1 and k2 are derived; k2 is smaller than k1, caused by the enhanced electronic conduction and indicating the ionic-to-electronic conduction transition of the CEI. Moreover, by introducing LiPO2F2 in high-concentration solid electrolytes, ionic conductors Li3PO4 and LixPOFy dominate the CEI, overcoming the ionic-to-electronic conduction transition; the resulting 4.4 V cell bears a discharge capacity of 130 mAh/g with a retention of 90% after 100 cycles, about 2 times that of the normal PEO-based cell.
中文翻译:
抑制阴极界面上的离子-电子传导转变,实现 4.4 V 聚(环氧乙烷)基全固态电池
基于能量密集的聚环氧乙烷 (PEO) 基全固态锂电池的实现受到工作电压限制和阴极界面反应机制未得到充分探索的阻碍。在这里,通过使用 Wagner 模型分析界面电阻,提出了界面反应参数 (k) 的变化,以揭示阴极电解质界面 (CEI) 在 ≥4.2 V 电压下的离子-电子传导转变和动力学形成机制,从而构建离子导体为主的 CEI 以实现 4.4 V 电池。开路电压 ≥4.2 V,可得出 k1 和 k2;k2 小于 k1,这是由增强的电子传导引起的,表明 CEI 的离子到电子传导转变。此外,通过在高浓度固体电解质中引入 LiPO2F2,离子导体 Li3PO4 和 LixPOFy 在 CEI 中占据主导地位,克服了离子到电子传导的转变;所得的 4.4 V 电池的放电容量为 130 mAh/g,100 次循环后保持率为 90%,约为普通基于 PEO 的电池的 2 倍。
更新日期:2024-12-19
中文翻译:
抑制阴极界面上的离子-电子传导转变,实现 4.4 V 聚(环氧乙烷)基全固态电池
基于能量密集的聚环氧乙烷 (PEO) 基全固态锂电池的实现受到工作电压限制和阴极界面反应机制未得到充分探索的阻碍。在这里,通过使用 Wagner 模型分析界面电阻,提出了界面反应参数 (k) 的变化,以揭示阴极电解质界面 (CEI) 在 ≥4.2 V 电压下的离子-电子传导转变和动力学形成机制,从而构建离子导体为主的 CEI 以实现 4.4 V 电池。开路电压 ≥4.2 V,可得出 k1 和 k2;k2 小于 k1,这是由增强的电子传导引起的,表明 CEI 的离子到电子传导转变。此外,通过在高浓度固体电解质中引入 LiPO2F2,离子导体 Li3PO4 和 LixPOFy 在 CEI 中占据主导地位,克服了离子到电子传导的转变;所得的 4.4 V 电池的放电容量为 130 mAh/g,100 次循环后保持率为 90%,约为普通基于 PEO 的电池的 2 倍。