当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Autonomous Exploitation of Reaction Pathways for Electrochemical C–N Coupling on Single-Atom Catalysts
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-12-18 , DOI: 10.1021/acscatal.4c05751 Junjie Pan, Haowen Ding, Xinzhe Yang, Xianhui Liang, Shanglin Wu, Mingzheng Zhang, Shunning Li, Shisheng Zheng, Feng Pan
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-12-18 , DOI: 10.1021/acscatal.4c05751 Junjie Pan, Haowen Ding, Xinzhe Yang, Xianhui Liang, Shanglin Wu, Mingzheng Zhang, Shunning Li, Shisheng Zheng, Feng Pan
Electrochemical C–N coupling between CO2 and N-containing small molecules is a promising strategy to close both the carbon and nitrogen loops to support the establishment of a net-zero carbon economy. However, the intricate reaction network and the contentious C–N coupling mechanism hinder the development of efficient electrocatalysts for industrial applications. Herein, we develop a graph-based approach to enable autonomous analysis of the C–N coupling mechanism for coreduction of CO2 and NO3– on single-atom catalysts (SACs). 1400 potential intermediates and 2490 C–N coupling modes are investigated based on the Cu-N4-C prototypical catalyst. We demonstrate that N-containing species with a higher reduction degree are more likely to undergo C–N coupling and the initial coupling of the C–N bond tends to occur on CO2. It is revealed that the hydrogenation energies of *NH2 and CO2, as well as their coupling energies, can serve as key indicators for catalyst recommendation. Using this approach, SACs with Mo, W, or Sb metal centers are identified as promising electrocatalysts for C–N coupling. This work presents a paradigm for automatically exploring the mechanisms of complex electrocatalytic reactions and offers a strategy for predicting highly active and selective SACs.
中文翻译:
自主开发单原子催化剂上电化学 C-N 耦合的反应途径
CO2 和含 N 小分子之间的电化学 C-N 耦合是一种很有前途的策略,可以闭合碳和氮循环以支持建立净零碳经济。然而,错综复杂的反应网络和有争议的 C-N 偶联机制阻碍了用于工业应用的高效电催化剂的开发。在此,我们开发了一种基于图形的方法,可以自主分析单原子催化剂 (SAC) 上 CO 2 和 NO3 共还原的 C-N 耦合机制。基于 Cu-N4-C 原型催化剂研究了 1400 种潜在中间体和 2490 种 C-N 偶联模式。我们证明,还原度较高的含 N 物质更有可能发生 C-N 偶联,并且 C-N 键的初始偶联往往发生在 CO2 上。结果表明,*NH2 和 CO2 的加氢能以及它们的耦合能可以作为催化剂推荐的关键指标。使用这种方法,具有 Mo、W 或 Sb 金属中心的 SAC 被确定为有前途的 C-N 耦合电催化剂。这项工作提出了一种自动探索复杂电催化反应机制的范式,并提供了一种预测高活性和选择性 SAC 的策略。
更新日期:2024-12-19
中文翻译:
自主开发单原子催化剂上电化学 C-N 耦合的反应途径
CO2 和含 N 小分子之间的电化学 C-N 耦合是一种很有前途的策略,可以闭合碳和氮循环以支持建立净零碳经济。然而,错综复杂的反应网络和有争议的 C-N 偶联机制阻碍了用于工业应用的高效电催化剂的开发。在此,我们开发了一种基于图形的方法,可以自主分析单原子催化剂 (SAC) 上 CO 2 和 NO3 共还原的 C-N 耦合机制。基于 Cu-N4-C 原型催化剂研究了 1400 种潜在中间体和 2490 种 C-N 偶联模式。我们证明,还原度较高的含 N 物质更有可能发生 C-N 偶联,并且 C-N 键的初始偶联往往发生在 CO2 上。结果表明,*NH2 和 CO2 的加氢能以及它们的耦合能可以作为催化剂推荐的关键指标。使用这种方法,具有 Mo、W 或 Sb 金属中心的 SAC 被确定为有前途的 C-N 耦合电催化剂。这项工作提出了一种自动探索复杂电催化反应机制的范式,并提供了一种预测高活性和选择性 SAC 的策略。