当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bacterial Cellulose/Graphene Oxide/Hydroxyapatite Biocomposite: A Scaffold from Sustainable Sources for Bone Tissue Engineering
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-12-19 , DOI: 10.1021/acsami.4c17306 Adam Aberra Challa, Nabanita Saha, Tanya Zhivkova, Radostina Alexandrova, Petr Saha
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-12-19 , DOI: 10.1021/acsami.4c17306 Adam Aberra Challa, Nabanita Saha, Tanya Zhivkova, Radostina Alexandrova, Petr Saha
Bone tissue engineering demands advanced biomaterials with tailored properties. In this regard, composite scaffolds offer a strategy to integrate the desired functionalities. These scaffolds are expected to provide sufficient cellular activities while maintaining the required strength necessary for the bone repair for which they are intended. Hence, attempts to obtain efficient composites are growing. However, in most cases, the conventional production methods of scaffolds are energy-intensive and leave an impact on the environment. This work aims to develop a biocomposite scaffold integrating bacterial cellulose (BC), hydroxyapatite (HAp), and graphene oxide (GO), designated as “BC/HAp/GO”. All components are sourced primarily from agricultural and food waste as alternative means. BC, known for its biocompatibility, fine fiber network, and high porosity, serves as an ideal scaffold material. HAp, a naturally occurring bone component, contributes osteoconductive properties, while GO provides mechanical strength and biofunctionalization capabilities. The biomaterials were analyzed and characterized using a scanning electron microscope, a X-ray diffractometer, and a Fourier transform infrared spectrometer. The produced biocomposite scaffolds were tested for thermal stability, mechanical strength, and biocompatibility. The results showed a nanofibrous, porous network of BC, highly crystalline HAp particles, and well-oxygenated GO flakes with slight structural deformities. The synthesized biocomposite demonstrated promising characteristics, such as increased tensile strength due to added GO particles and higher bioactivity through the introduction of HAp. These inexpensively synthesized materials, marked by suitable surface morphology and cell adhesion properties, open potential applications in bone repair and regeneration.
中文翻译:
细菌纤维素/氧化石墨烯/羟基磷灰石生物复合材料:来自可持续来源的骨组织工程支架
骨组织工程需要具有定制特性的先进生物材料。在这方面,复合支架提供了一种集成所需功能的策略。这些支架有望提供足够的细胞活性,同时保持它们预期的骨骼修复所需的强度。因此,获得高效复合材料的尝试正在增加。然而,在大多数情况下,脚手架的传统生产方法是能源密集型的,并且会对环境产生影响。这项工作旨在开发一种集成细菌纤维素 (BC)、羟基磷灰石 (HAp) 和氧化石墨烯 (GO) 的生物复合支架,命名为“BC/HAp/GO”。所有组件主要来自农业和食物垃圾作为替代手段。BC 以其生物相容性、细纤维网络和高孔隙率而闻名,是一种理想的支架材料。HAp 是一种天然存在的骨骼成分,有助于骨传导特性,而 GO 则提供机械强度和生物功能化能力。使用扫描电子显微镜、X 射线衍射仪和傅里叶变换红外光谱仪对生物材料进行分析和表征。生产的生物复合材料支架经过热稳定性、机械强度和生物相容性测试。结果显示 BC、高结晶 HAp 颗粒和氧合良好的 GO 薄片的纳米纤维、多孔网络,具有轻微的结构畸形。合成的生物复合材料表现出有前途的特性,例如由于添加的 GO 颗粒而提高的拉伸强度,以及通过引入 HAp 提高的生物活性。 这些廉价合成的材料以合适的表面形态和细胞粘附特性为标志,在骨修复和再生方面开辟了潜在的应用。
更新日期:2024-12-19
中文翻译:
细菌纤维素/氧化石墨烯/羟基磷灰石生物复合材料:来自可持续来源的骨组织工程支架
骨组织工程需要具有定制特性的先进生物材料。在这方面,复合支架提供了一种集成所需功能的策略。这些支架有望提供足够的细胞活性,同时保持它们预期的骨骼修复所需的强度。因此,获得高效复合材料的尝试正在增加。然而,在大多数情况下,脚手架的传统生产方法是能源密集型的,并且会对环境产生影响。这项工作旨在开发一种集成细菌纤维素 (BC)、羟基磷灰石 (HAp) 和氧化石墨烯 (GO) 的生物复合支架,命名为“BC/HAp/GO”。所有组件主要来自农业和食物垃圾作为替代手段。BC 以其生物相容性、细纤维网络和高孔隙率而闻名,是一种理想的支架材料。HAp 是一种天然存在的骨骼成分,有助于骨传导特性,而 GO 则提供机械强度和生物功能化能力。使用扫描电子显微镜、X 射线衍射仪和傅里叶变换红外光谱仪对生物材料进行分析和表征。生产的生物复合材料支架经过热稳定性、机械强度和生物相容性测试。结果显示 BC、高结晶 HAp 颗粒和氧合良好的 GO 薄片的纳米纤维、多孔网络,具有轻微的结构畸形。合成的生物复合材料表现出有前途的特性,例如由于添加的 GO 颗粒而提高的拉伸强度,以及通过引入 HAp 提高的生物活性。 这些廉价合成的材料以合适的表面形态和细胞粘附特性为标志,在骨修复和再生方面开辟了潜在的应用。