当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanisms of Phase Evolution in the Cu–Sb–S System Controlled by the Incorporation of Cu in Sb2S3 Thin Films
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-12-19 , DOI: 10.1021/acsami.4c17960 Obed Yamín Ramírez-Esquivel, Zeuz Montiel-González, Andrés M. Garay-Tapia, Maria Camila Barrero-Moreno, Francisco Servando Aguirre-Tostado, Dalia Alejandra Mazón-Montijo
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-12-19 , DOI: 10.1021/acsami.4c17960 Obed Yamín Ramírez-Esquivel, Zeuz Montiel-González, Andrés M. Garay-Tapia, Maria Camila Barrero-Moreno, Francisco Servando Aguirre-Tostado, Dalia Alejandra Mazón-Montijo
Ongoing research in metal chalcogenide semiconductors aims to develop alternative materials for optoelectronic devices. However, due to cost and environmental considerations, there is an increasing emphasis on utilizing green materials. This shift toward sustainable materials and processing is expected to become essential in materials research. In this work, we report the microstructural evolution of thin films of the Cu–Sb–S (CAS) system. The films were obtained by annealing amorphous Sb2S3 precursor films previously immersed in a copper solution with variable residence time. Our main findings demonstrate that varying the residence time in immersion together with the annealing and crystallization of the precursor films leads to a controlled incorporation/distribution of Cu into the films, which promotes the formation of films with phases spanning from a mixture between Sb2S3 and CuSbS2 to a pure Cu12Sb4S13 phase, which represents a significant variation in optoelectronic properties. The phase transition mechanisms were investigated using first-principles calculations and correlated with the structural, morphological, and optoelectronic characterization. Results indicate that vacancies serve as nucleation sites for copper incorporation. Subsequently, interstitial sites are occupied during the phase transformation from Sb2S3 to CuSbS2, whereas the transition from CuSbS2 to Cu12Sb4S13 proceeds via a substitutional mechanism. This study contributes to understanding the fundamental phenomena underlying our proposed methodology. These results could promote the development of CAS-based semiconductors with predetermined properties by manipulating simple process parameters, such as the residence time in a copper solution.
中文翻译:
Cu-Sb-S 系统中由 Cu 掺入 Sb2S3 薄膜控制的相发生机制
正在进行的金属硫属化物半导体研究旨在开发用于光电器件的替代材料。然而,由于成本和环境考虑,人们越来越重视使用绿色材料。这种向可持续材料和加工的转变预计将在材料研究中变得至关重要。在这项工作中,我们报道了 Cu-Sb-S (CAS) 系统薄膜的微观结构演变。这些薄膜是通过对先前浸入具有可变停留时间的铜溶液中的无定形 Sb2S3 前驱体薄膜进行退火而获得的。我们的主要发现表明,改变浸泡中的停留时间以及前驱体薄膜的退火和结晶导致 Cu 受控地掺入/分布到薄膜中,从而促进薄膜的形成,其相范围从 Sb2S3 和 CuSbS2 的混合物到纯 Cu12Sb4S13相,这表示光电特性的显着变化。使用第一性原理计算研究了相变机制,并与结构、形态和光电表征相关联。结果表明,空位是铜掺入的成核位点。随后,在从 Sb2S3 到 CuSbS2 的相变过程中,间隙位点被占据,而从 CuSbS2 到 Cu12Sb4S13 的转变通过取代机制进行。这项研究有助于理解我们提出的方法背后的基本现象。 这些结果可以通过操纵简单的工艺参数(例如在铜溶液中的停留时间)来促进具有预定特性的基于 CAS 的半导体的发展。
更新日期:2024-12-19
中文翻译:
Cu-Sb-S 系统中由 Cu 掺入 Sb2S3 薄膜控制的相发生机制
正在进行的金属硫属化物半导体研究旨在开发用于光电器件的替代材料。然而,由于成本和环境考虑,人们越来越重视使用绿色材料。这种向可持续材料和加工的转变预计将在材料研究中变得至关重要。在这项工作中,我们报道了 Cu-Sb-S (CAS) 系统薄膜的微观结构演变。这些薄膜是通过对先前浸入具有可变停留时间的铜溶液中的无定形 Sb2S3 前驱体薄膜进行退火而获得的。我们的主要发现表明,改变浸泡中的停留时间以及前驱体薄膜的退火和结晶导致 Cu 受控地掺入/分布到薄膜中,从而促进薄膜的形成,其相范围从 Sb2S3 和 CuSbS2 的混合物到纯 Cu12Sb4S13相,这表示光电特性的显着变化。使用第一性原理计算研究了相变机制,并与结构、形态和光电表征相关联。结果表明,空位是铜掺入的成核位点。随后,在从 Sb2S3 到 CuSbS2 的相变过程中,间隙位点被占据,而从 CuSbS2 到 Cu12Sb4S13 的转变通过取代机制进行。这项研究有助于理解我们提出的方法背后的基本现象。 这些结果可以通过操纵简单的工艺参数(例如在铜溶液中的停留时间)来促进具有预定特性的基于 CAS 的半导体的发展。