当前位置: X-MOL 学术J. Magnes. Alloys › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication and characterization of magnesium-based nanocomposites reinforced with Baghdadite and carbon nanotubes for orthopaedical applications
Journal of Magnesium and Alloys ( IF 15.8 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.jma.2024.12.004
Mojtaba Ansari, Shiva Mahdavikia, Hossein Eslami, Mozhdeh Saghalaini, Hamid Taghipour, Fatemeh Zare, Shahin Shirani, Mohammad Hossein Alizadeh Roknabadi

This study explores the potential of Mg/Carbon Nanotubes/Baghdadite composites as biomaterials for bone regeneration and repair while addressing the obstacles to their clinical application. BAG powder was synthesized using the sol-gel method to ensure a fine distribution within the Mg/CNTs matrix. Mg/1.5 wt.% CNT composites were reinforced with BAG at weight fractions of 0.5, 1.0, and 1.5 wt.% using spark plasma sintering at 450 °C and 50 MPa after homogenization via ball milling. The cellular bioactivity of these nanocomposites was evaluated using human osteoblast-like cells and adipose-derived mesenchymal stromal cells. The proliferation and attachment of MG-63 cells were assessed and visualized using the methylthiazol tetrazolium (MTT) assay and SEM, while AD-MSC differentiation was measured using alkaline phosphatase activity assays. Histograms were also generated to visualize the diameter distributions of particles in SEM images using image processing techniques. The Mg/CNTs/0.5 wt.% BAG composite demonstrated optimal mechanical properties, with compressive strength, yield strength, and fracture strain of 259.75 MPa, 180.25 MPa, and 31.65 %, respectively. Machine learning models, including CNN, LSTM, and GRU, were employed to predict stress-strain relationships across varying BAG amounts, aiming to accurately model these curves without requiring extensive physical experiments. As shown by contact angle measurements, enhanced hydrophilicity promoted better cell adhesion and proliferation. Furthermore, corrosion resistance improved with a higher BAG content. This study concludes that Mg/CNTs composites reinforced with BAG concentrations below 1.0 wt.% offer promising biodegradable implant materials for orthopedic applications, featuring adequate load-bearing capacity and improved corrosion resistance.

中文翻译:


用于骨科应用的巴格达石和碳纳米管增强的镁基纳米复合材料的制备和表征



本研究探讨了 Mg/碳纳米管/巴格达石复合材料作为骨再生和修复生物材料的潜力,同时解决了其临床应用的障碍。使用溶胶-凝胶法合成 BAG 粉末,以确保在 Mg/CNTs 基质内精细分布。Mg/1.5 wt.% CNT 复合材料在 450 °C 和 50 MPa 下使用火花等离子体烧结,重量分数为 0.5、1.0 和 1.5 wt.% 的 BAG 增强,然后通过球磨均质化。使用人成骨细胞样细胞和脂肪来源的间充质基质细胞评估这些纳米复合材料的细胞生物活性。使用甲基噻唑四唑 (MTT) 测定和 SEM 评估和观察 MG-63 细胞的增殖和附着,而使用碱性磷酸酶活性测定测量 AD-MSC 分化。还生成了直方图,以使用图像处理技术可视化 SEM 图像中颗粒的直径分布。Mg/CNTs/0.5 wt.% BAG复合材料表现出最佳的力学性能,抗压强度、屈服强度和断裂应变分别为259.75 MPa、180.25 MPa和31.65 %。机器学习模型(包括 CNN、LSTM 和 GRU)用于预测不同 BAG 量的应力-应变关系,旨在准确模拟这些曲线,而无需进行广泛的物理实验。如接触角测量所示,增强的亲水性促进了更好的细胞粘附和增殖。此外,随着 BAG 含量的增加,耐腐蚀性得到改善。本研究得出结论,BAG 浓度低于 1.0 wt 的 Mg/CNTs 复合材料。% 为骨科应用提供有前途的可生物降解植入物材料,具有足够的承载能力和改进的耐腐蚀性。
更新日期:2024-12-19
down
wechat
bug