当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Gravity-Driven Ultrahigh-Speed Electrospinning for the Production of Ethyl Cellulose Fibers with Tunable Porosity for Oil Absorption
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-12-19 , DOI: 10.1021/acssuschemeng.4c08259 Qiangjun Hao, John Schossig, Tyler Davide, Adedayo Towolawi, Cheng Zhang, Ping Lu
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-12-19 , DOI: 10.1021/acssuschemeng.4c08259 Qiangjun Hao, John Schossig, Tyler Davide, Adedayo Towolawi, Cheng Zhang, Ping Lu
Ethyl cellulose (EC) is a biocompatible, renewable, and recyclable material with diverse sources, making it an attractive candidate for industrial applications. Electrospinning has gained significant attention for the production of EC fibers. However, conventional electrospinning methods face challenges such as bead formation, low yield, and the absence of porous internal structures, limiting both the functional performance and scalability. This study presents an optimized approach for producing EC fibers by using a gravity-driven ultrahigh-speed electrospinning (GUHS-ES) system. This system leverages gravity to reshape the Taylor cone morphology during electrospinning, enhancing stability and dramatically increasing throughput. As flow rates increase, the Taylor cone contracts inward, while the tip structure expands and stabilizes, reaching maximum size at ultrahigh flow rates (100–150 mL/h). This unique Taylor cone structure enables a fiber production rate of 24.5 g/h, hundreds of times greater than conventional electrospinning techniques. Another advantage of the GUHS-ES system is its ability to achieve both high diameter uniformity and adjustable porosity. At ultrahigh flow rates, the pore sizes of the EC fibers reached 321 nm. The highly porous structure of EC fibers exhibited an absorption capacity of 56.6 to 110.7 times their weight, exceeding most previously reported oil-absorbing materials and demonstrating high efficacy for rapid waste oil absorption. This green, efficient technology represents a promising advancement for the large-scale production and application of natural polymer fibers with broad implications for sustainable industrial processes.
中文翻译:
重力驱动的超高速静电纺丝,用于生产具有可调孔隙率的乙基纤维素纤维,用于吸油
乙基纤维素 (EC) 是一种生物相容性、可再生和可回收的材料,来源多种多样,使其成为工业应用的有吸引力的候选者。静电纺丝在 EC 纤维的生产中受到了极大的关注。然而,传统的静电纺丝方法面临诸如珠子形成、产量低和缺乏多孔内部结构等挑战,限制了功能性能和可扩展性。本研究提出了一种使用重力驱动超高速静电纺丝 (GUHS-ES) 系统生产 EC 纤维的优化方法。该系统利用重力在静电纺丝过程中重塑泰勒锥体形态,增强稳定性并显著提高产量。随着流速的增加,泰勒锥向内收缩,而吸头结构膨胀并稳定,在超高流速 (100–150 mL/h) 下达到最大尺寸。这种独特的泰勒锥结构使纤维生产率达到 24.5 g/h,是传统静电纺丝技术的数百倍。GUHS-ES 系统的另一个优点是它能够实现高直径均匀性和可调节的孔隙率。在超高流速下,EC 纤维的孔径达到 321 nm。EC 纤维的高度多孔结构表现出其重量的 56.6 至 110.7 倍的吸收能力,超过了以前报道的大多数吸油材料,并显示出快速吸收废油的高效性。这种绿色、高效的技术代表了天然聚合物纤维大规模生产和应用的前景广阔的进步,对可持续的工业过程具有广泛的影响。
更新日期:2024-12-19
中文翻译:
重力驱动的超高速静电纺丝,用于生产具有可调孔隙率的乙基纤维素纤维,用于吸油
乙基纤维素 (EC) 是一种生物相容性、可再生和可回收的材料,来源多种多样,使其成为工业应用的有吸引力的候选者。静电纺丝在 EC 纤维的生产中受到了极大的关注。然而,传统的静电纺丝方法面临诸如珠子形成、产量低和缺乏多孔内部结构等挑战,限制了功能性能和可扩展性。本研究提出了一种使用重力驱动超高速静电纺丝 (GUHS-ES) 系统生产 EC 纤维的优化方法。该系统利用重力在静电纺丝过程中重塑泰勒锥体形态,增强稳定性并显著提高产量。随着流速的增加,泰勒锥向内收缩,而吸头结构膨胀并稳定,在超高流速 (100–150 mL/h) 下达到最大尺寸。这种独特的泰勒锥结构使纤维生产率达到 24.5 g/h,是传统静电纺丝技术的数百倍。GUHS-ES 系统的另一个优点是它能够实现高直径均匀性和可调节的孔隙率。在超高流速下,EC 纤维的孔径达到 321 nm。EC 纤维的高度多孔结构表现出其重量的 56.6 至 110.7 倍的吸收能力,超过了以前报道的大多数吸油材料,并显示出快速吸收废油的高效性。这种绿色、高效的技术代表了天然聚合物纤维大规模生产和应用的前景广阔的进步,对可持续的工业过程具有广泛的影响。