Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multiscale Mass Transport Across Membranes: From Molecular Scale to Nanoscale to Micron Scale
ACS Nano ( IF 15.8 ) Pub Date : 2024-12-19 , DOI: 10.1021/acsnano.4c11647 Guanhua Xu, Ao Chen, Feng Feng, Yuqing Wu, Xiuyu Wang
ACS Nano ( IF 15.8 ) Pub Date : 2024-12-19 , DOI: 10.1021/acsnano.4c11647 Guanhua Xu, Ao Chen, Feng Feng, Yuqing Wu, Xiuyu Wang
Multiscale mass transport across membranes occurs ubiquitously in biological systems but is difficult to achieve and long-sought-after in abiotic systems. The multiscale transmembrane transport in abiotic systems requires the integration of multiscale transport channels and energy ergodicity, making multiscale mass transport a significant challenge. Herein, emulsion droplets with cell-like confinement are used as the experimental model, and multiscale mass transport is achieved from molecular scale to nanoscale to micron scale, reproducing rudimentary forms of cell-like transport behaviors. By adjustment of the magnetic dipole interactions between adjacent superparamagnetic nanoparticles (MNPs), the assembled structure at the interface of emulsion droplets is successfully modified, which constructs transport channels of various scales at the interface. Simultaneously, the assembly process of MNPs induces self-emulsification, which increases entropy and further reduces Gibbs free energy, ultimately realizing multiscale mass transport that evolves in time visiting all possible microscopic states (energy ergodicity). This work represents the comprehensive identification and realization of a multiscale transmembrane transport in abiotic droplet systems, which offers opportunities for the development of high-order cell-like characteristics in emulsion droplet-based communities, synthetic cells, microrobots, and drug carriers.
中文翻译:
跨膜的多尺度质量传递:从分子尺度到纳米尺度再到微米尺度
跨膜的多尺度质量传递在生物系统中无处不在,但在非生物系统中难以实现且长期以来备受追捧。非生物系统中的多尺度跨膜运输需要多尺度运输通道和能源遍历的整合,这使得多尺度质量运输成为一项重大挑战。在此,使用具有细胞样限制的乳液液滴作为实验模型,实现了从分子尺度到纳米尺度再到微米尺度的多尺度质量传递,再现了细胞样传递行为的基本形式。通过调节相邻超顺磁性纳米颗粒 (MNP) 之间的磁偶极相互作用,成功修饰了乳液液滴界面处的组装结构,从而在界面处构建了各种尺度的传输通道。同时,MNPs 的组装过程诱导自乳化,这增加了熵并进一步降低了吉布斯自由能,最终实现了访问所有可能的微观状态(能量遍历度)随时间演变的多尺度质量传递。这项工作代表了非生物液滴系统中多尺度跨膜转运的全面鉴定和实现,这为在基于乳液液滴的群落、合成细胞、微型机器人和药物载体中发展高阶细胞样特征提供了机会。
更新日期:2024-12-19
中文翻译:
跨膜的多尺度质量传递:从分子尺度到纳米尺度再到微米尺度
跨膜的多尺度质量传递在生物系统中无处不在,但在非生物系统中难以实现且长期以来备受追捧。非生物系统中的多尺度跨膜运输需要多尺度运输通道和能源遍历的整合,这使得多尺度质量运输成为一项重大挑战。在此,使用具有细胞样限制的乳液液滴作为实验模型,实现了从分子尺度到纳米尺度再到微米尺度的多尺度质量传递,再现了细胞样传递行为的基本形式。通过调节相邻超顺磁性纳米颗粒 (MNP) 之间的磁偶极相互作用,成功修饰了乳液液滴界面处的组装结构,从而在界面处构建了各种尺度的传输通道。同时,MNPs 的组装过程诱导自乳化,这增加了熵并进一步降低了吉布斯自由能,最终实现了访问所有可能的微观状态(能量遍历度)随时间演变的多尺度质量传递。这项工作代表了非生物液滴系统中多尺度跨膜转运的全面鉴定和实现,这为在基于乳液液滴的群落、合成细胞、微型机器人和药物载体中发展高阶细胞样特征提供了机会。