npj Quantum Information ( IF 6.6 ) Pub Date : 2024-12-19 , DOI: 10.1038/s41534-024-00896-9 Dominic W. Berry, Nicholas C. Rubin, Ahmed O. Elnabawy, Gabriele Ahlers, A. Eugene DePrince, Joonho Lee, Christian Gogolin, Ryan Babbush
This paper improves and demonstrates the usefulness of the first quantized plane-wave algorithms for the quantum simulation of electronic structure. We describe our quantum algorithm for first quantized simulation that accurately includes pseudopotentials. We focus on the Goedecker-Tetter-Hutter pseudopotential, and despite its complicated form, we block encode the associated operator without significantly increasing the overall cost of quantum simulation. This is surprising since simulating the nuclear potential is much simpler without pseudopotentials, yet is still the bottleneck. We also generalize prior methods to enable the simulation of materials with non-cubic unit cells, which requires nontrivial modifications. Finally, we combine these techniques to estimate block-encoding costs for commercially relevant instances of heterogeneous catalysis (e.g. carbon monoxide adsorption) and compare to the quantum resources needed to simulate materials in second quantization. We conclude that for computational cells with many particles, first quantization often requires meaningfully less spacetime volume.
中文翻译:
使用非局部赝势对真实材料进行第一次量子化的量子模拟
本文改进并演示了第一个量化平面波算法对电子结构量子模拟的有用性。我们描述了准确包含赝势的第一个量化模拟的量子算法。我们专注于 Goedecker-Tetter-Hutter 伪势,尽管它的形式很复杂,但我们对相关的算子进行了分块编码,而不会显着增加量子模拟的总体成本。这很令人惊讶,因为在没有赝势的情况下模拟核势要简单得多,但仍然是瓶颈。我们还推广了先前的方法,以实现具有非三次晶胞的材料仿真,这需要重要的修改。最后,我们将这些技术结合起来,估计商业上相关的非均相催化实例(例如一氧化碳吸附)的块编码成本,并与模拟二次量子化材料所需的量子资源进行比较。我们得出的结论是,对于具有许多粒子的计算单元,第一次量子化通常需要有意义的较少时空体积。