当前位置:
X-MOL 学术
›
npj Digit. Med.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
SurgeryLLM: a retrieval-augmented generation large language model framework for surgical decision support and workflow enhancement
npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-12-18 , DOI: 10.1038/s41746-024-01391-3 Chin Siang Ong, Nicholas T. Obey, Yanan Zheng, Arman Cohan, Eric B. Schneider
中文翻译:
SurgeryLLM:用于手术决策支持和工作流程增强的检索增强一代大型语言模型框架
更新日期:2024-12-19
npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-12-18 , DOI: 10.1038/s41746-024-01391-3 Chin Siang Ong, Nicholas T. Obey, Yanan Zheng, Arman Cohan, Eric B. Schneider
SurgeryLLM, a large language model framework using Retrieval Augmented Generation demonstrably incorporated domain-specific knowledge from current evidence-based surgical guidelines when presented with patient-specific data. The successful incorporation of guideline-based information represents a substantial step toward enabling greater surgeon efficiency, improving patient safety, and optimizing surgical outcomes.
中文翻译:
SurgeryLLM:用于手术决策支持和工作流程增强的检索增强一代大型语言模型框架
SurgeryLLM 是一个使用 Retrieval Augmented Generation 的大型语言模型框架,当呈现患者特定数据时,它显然整合了当前循证手术指南中的特定领域知识。基于指南的信息的成功整合代表着朝着提高外科医生效率、改善患者安全和优化手术结果迈出了重要一步。