npj Computational Materials ( IF 9.4 ) Pub Date : 2024-12-18 , DOI: 10.1038/s41524-024-01482-5 Alexander Scheinker, Reeju Pokharel
Coherent diffraction imaging (CDI) is an advanced non-destructive 3D X-ray imaging technique for measuring a sample’s electron density. The main challenge of CDI is loss of phase information in diffraction intensity measurements, resulting in lengthy iterative reconstruction processes that can return non-unique solutions, which pose challenges for experiments attempting to track dynamic sample evolution through multiple states. As the increased brightness of fourth-generation light sources enables faster sample measurements and drives operando experiments with Bragg CDI, there is a growing need for faster reconstruction techniques that can keep pace. We have developed an adaptive generative autoencoder approach for uniquely tracking a sample’s electron density as it dynamically evolves. Our approach adaptively tunes the low-dimensional latent embedding of a generative autoencoder, enabling a computationally efficient manner to account for time-varying shifting distributions in real-time. Analytic proof of convergence is provided as well as numerical demonstration of sample tracking with noisy measurements.
中文翻译:
通过生成式自动编码器的自适应潜在空间调整实现动态 3D 相干衍射成像
相干衍射成像 (CDI) 是一种先进的无损 3D X 射线成像技术,用于测量样品的电子密度。CDI 的主要挑战是衍射强度测量中的相位信息丢失,导致冗长的迭代重建过程,可能会返回非唯一解,这给试图跟踪样品在多种状态下的动态演变的实验带来了挑战。随着第四代光源亮度的增加,可以更快地进行样品测量,并推动布拉格 CDI 的原位实验,因此对能够跟上步伐的更快重建技术的需求越来越大。我们开发了一种自适应生成式自动编码器方法,用于在样品动态变化时独特地跟踪样品的电子密度。我们的方法自适应地调整生成式自动编码器的低维潜在嵌入,从而以一种计算高效的方式实时解释时变的偏移分布。提供了收敛的分析证明以及使用噪声测量进行样品跟踪的数值演示。