当前位置:
X-MOL 学术
›
Astrophys. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Solar Wind–Magnetosphere Coupling by the Kelvin–Helmholtz Instability at Mercury
The Astrophysical Journal ( IF 4.8 ) Pub Date : 2024-12-19 , DOI: 10.3847/1538-4357/ad944b S. H. Lai, Y.-C. Wang, Y.-H. Yang and W.-H. Ip
The Astrophysical Journal ( IF 4.8 ) Pub Date : 2024-12-19 , DOI: 10.3847/1538-4357/ad944b S. H. Lai, Y.-C. Wang, Y.-H. Yang and W.-H. Ip
The Kelvin–Helmholtz instability (KHI) has been considered important in the energy transfer and momentum coupling between the solar wind and planetary magnetospheres. To explore this issue, we employ a two-dimensional magnetohydrodynamic simulation to study the nonlinear evolution of the KHI at Mercury’s magnetopause using the parameters derived from a global hybrid simulation of MESSENGER’s first flyby of Mercury. Due to the absence of comprehensive plasma observations of Mercury’s magnetosphere, two scenarios are considered: one with a heavily loaded magnetosphere and the other with a weakly loaded magnetosphere, to demonstrate the development of the KHI under distinct levels of magnetospheric plasma density. Our results indicate that the KHI with a heavily loaded magnetosphere leads to a significantly more turbulent magnetopause and grows into the nonlinear fast-mode plane waves expanding away from the magnetopause. The momentum and energy flux quantified from our simulations reveal that the KHI with a heavily loaded magnetosphere can efficiently transport momentum and energy away from the magnetopause in the presence of the fast-mode plane waves. In the cases with a heavily loaded magnetosphere, observed in the inner magnetosphere, the momentum flux can reach 10−3 nPa, i.e., about 0.5% of the initial solar-wind dynamic pressure; the energy flux can be and the energy density is about 1.5%–3.0% of the initial solar-wind energy. In the cases with a very thin magnetosphere, observed away from the magnetopause, the momentum flux is negligible and the energy flux is smaller without the presence of the fast-mode plane waves in the magnetosphere.
中文翻译:
水星开尔文-亥姆霍兹不稳定性对太阳风-磁层的耦合
开尔文-亥姆霍兹不稳定性 (KHI) 被认为在太阳风和行星磁层之间的能量传递和动量耦合中很重要。为了探索这个问题,我们采用二维磁流体动力学模拟,使用来自 MESSENGER 首次飞越水星的全球混合模拟得出的参数,研究水星磁层顶处 KHI 的非线性演变。由于缺乏对水星磁层的全面等离子体观测,因此考虑了两种情况:一种是重负载磁层,另一种是弱负载磁层,以证明 KHI 在不同磁层等离子体密度水平下的发展。我们的结果表明,具有重负载磁层的 KHI 会导致明显更湍流的磁层顶,并发展成从磁层顶向外扩展的非线性快模平面波。从我们的模拟中量化的动量和能量通量表明,在快模平面波存在的情况下,具有重负载磁层层的 KHI 可以有效地将动量和能量从磁层顶传输出去。在内磁层中观察到的重负载磁层的情况下,动量通量可以达到 10-3 nPa,即大约是初始太阳风动态压力的 0.5%;能量通量可以是初始太阳风能的能量密度约为 1.5%–3.0%。在远离磁层顶的地方观察非常薄的磁层的情况下,动量通量可以忽略不计,并且磁通量较小,而磁层中不存在快模平面波。
更新日期:2024-12-19
中文翻译:
水星开尔文-亥姆霍兹不稳定性对太阳风-磁层的耦合
开尔文-亥姆霍兹不稳定性 (KHI) 被认为在太阳风和行星磁层之间的能量传递和动量耦合中很重要。为了探索这个问题,我们采用二维磁流体动力学模拟,使用来自 MESSENGER 首次飞越水星的全球混合模拟得出的参数,研究水星磁层顶处 KHI 的非线性演变。由于缺乏对水星磁层的全面等离子体观测,因此考虑了两种情况:一种是重负载磁层,另一种是弱负载磁层,以证明 KHI 在不同磁层等离子体密度水平下的发展。我们的结果表明,具有重负载磁层的 KHI 会导致明显更湍流的磁层顶,并发展成从磁层顶向外扩展的非线性快模平面波。从我们的模拟中量化的动量和能量通量表明,在快模平面波存在的情况下,具有重负载磁层层的 KHI 可以有效地将动量和能量从磁层顶传输出去。在内磁层中观察到的重负载磁层的情况下,动量通量可以达到 10-3 nPa,即大约是初始太阳风动态压力的 0.5%;能量通量可以是初始太阳风能的能量密度约为 1.5%–3.0%。在远离磁层顶的地方观察非常薄的磁层的情况下,动量通量可以忽略不计,并且磁通量较小,而磁层中不存在快模平面波。