当前位置:
X-MOL 学术
›
Arthritis Res. Ther.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A non-invasive model for diagnosis of primary Sjogren’s disease based on salivary biomarkers, serum autoantibodies, and Schirmer’s test
Arthritis Research & Therapy ( IF 4.4 ) Pub Date : 2024-12-19 , DOI: 10.1186/s13075-024-03459-7 Xinwei Zhang, Zhangdi Liao, Yangchun Chen, Huiqin Lu, Aodi Wang, Yingying Shi, Qi Zhang, Ying Wang, Yan Li, Jingying Lan, Chubing Chen, Chaoqiong Deng, Wuwei Zhuang, Lingyu Liu, Hongyan Qian, Shiju Chen, Zhibin Li, Guixiu Shi, Yuan Liu
Arthritis Research & Therapy ( IF 4.4 ) Pub Date : 2024-12-19 , DOI: 10.1186/s13075-024-03459-7 Xinwei Zhang, Zhangdi Liao, Yangchun Chen, Huiqin Lu, Aodi Wang, Yingying Shi, Qi Zhang, Ying Wang, Yan Li, Jingying Lan, Chubing Chen, Chaoqiong Deng, Wuwei Zhuang, Lingyu Liu, Hongyan Qian, Shiju Chen, Zhibin Li, Guixiu Shi, Yuan Liu
Minor salivary gland (MSG) biopsy is a critical but invasive method for the classification of primary Sjögren’s disease (pSjD). Here we aimed to identify salivary proteins as potential biomarkers and to establish a non-invasive prediction model for pSjD. Liquid chromatography-tandem mass spectrometry was conducted on whole saliva samples from patients with pSjD and non-Sjögren control subjects (non-pSjD). Proteins involved in immune processes were upregulated in the pSjD group, such as complement C3 (C3), complement factor B (CFB), clusterin (CLU), calreticulin (CALR), and neutrophil elastase (NE), which were further confirmed by ELISA. Multivariate logistic regression analyses were performed to identify markers that differentiated pSjD from non-pSjD; receiver operating characteristic (ROC) curves were constructed. A diagnostic model based on the combination of salivary biomarkers (CFB, CLU, and NE), serum autoantibodies (anti-SSA /Ro60 and anti-SSA/Ro52), and Schirmer’s test was evaluated in 186 patients (derivation cohort) with replication in 72 patients (validation cohort). In multivariate analyses, CFB, CLU, and NE were independent predictors of pSS. A model based on the combination of salivary biomarkers (CFB, CLU, and NE), serum autoantibodies (anti-SSA and anti-Ro52), and Schirmer’s test achieved significant discrimination of pSS. In the derivation cohort, the area under curve (AUC) of the ROC was 0.930 (95% CI 0.877–0.965, P < 0.001), with a sensitivity and specificity of 84.85% and 92.45%, respectively. Notably, similar results were obtained in a validation cohort. The 6-biomarker panel could provide a novel non-invasive tool for the classification of pSjD.
中文翻译:
基于唾液生物标志物、血清自身抗体和 Schirmer 试验的原发性干燥病诊断的非侵入性模型
小唾液腺 (MSG) 活检是原发性干燥症 (pSjD) 分类的一种关键但有创的方法。在这里,我们旨在将唾液蛋白确定为潜在的生物标志物,并建立 pSjD 的非侵入性预测模型。对 pSjD 患者和非干燥对照受试者 (non-pSjD) 的全唾液样本进行液相色谱-串联质谱分析。pSjD 组参与免疫过程的蛋白质如补体 C3 (C3) 、补体因子 B (CFB) 、聚集蛋白 (CLU) 、钙网蛋白 (CALR) 和中性粒细胞弹性蛋白酶 (NE) 上调,ELISA 进一步证实。进行多因素 logistic 回归分析以确定区分 pSjD 和非 pSjD 的标志物;构建受试者工作特征 (ROC) 曲线。在 186 例患者(衍生队列)中评估了基于唾液生物标志物 (CFB、CLU 和 NE)、血清自身抗体 (抗 SSA /Ro60 和抗 SSA/Ro52) 和 Schirmer 试验的组合的诊断模型,并在 72 例患者 (验证队列) 中进行了重复。在多变量分析中,CFB 、 CLU 和 NE 是 pSS 的独立预测因子。基于唾液生物标志物 (CFB 、 CLU 和 NE) 、血清自身抗体 (抗 SSA 和抗 Ro52) 和 Schirmer 试验组合的模型实现了对 pSS 的显著区分。在衍生队列中,ROC 的曲线下面积 (AUC) 为 0.930 (95% CI 0.877–0.965,P < 0.001),敏感性和特异性分别为 84.85% 和 92.45%。值得注意的是,在验证队列中获得了类似的结果。6 生物标志物面板可以为 pSjD 的分类提供一种新的非侵入性工具。
更新日期:2024-12-19
中文翻译:
基于唾液生物标志物、血清自身抗体和 Schirmer 试验的原发性干燥病诊断的非侵入性模型
小唾液腺 (MSG) 活检是原发性干燥症 (pSjD) 分类的一种关键但有创的方法。在这里,我们旨在将唾液蛋白确定为潜在的生物标志物,并建立 pSjD 的非侵入性预测模型。对 pSjD 患者和非干燥对照受试者 (non-pSjD) 的全唾液样本进行液相色谱-串联质谱分析。pSjD 组参与免疫过程的蛋白质如补体 C3 (C3) 、补体因子 B (CFB) 、聚集蛋白 (CLU) 、钙网蛋白 (CALR) 和中性粒细胞弹性蛋白酶 (NE) 上调,ELISA 进一步证实。进行多因素 logistic 回归分析以确定区分 pSjD 和非 pSjD 的标志物;构建受试者工作特征 (ROC) 曲线。在 186 例患者(衍生队列)中评估了基于唾液生物标志物 (CFB、CLU 和 NE)、血清自身抗体 (抗 SSA /Ro60 和抗 SSA/Ro52) 和 Schirmer 试验的组合的诊断模型,并在 72 例患者 (验证队列) 中进行了重复。在多变量分析中,CFB 、 CLU 和 NE 是 pSS 的独立预测因子。基于唾液生物标志物 (CFB 、 CLU 和 NE) 、血清自身抗体 (抗 SSA 和抗 Ro52) 和 Schirmer 试验组合的模型实现了对 pSS 的显著区分。在衍生队列中,ROC 的曲线下面积 (AUC) 为 0.930 (95% CI 0.877–0.965,P < 0.001),敏感性和特异性分别为 84.85% 和 92.45%。值得注意的是,在验证队列中获得了类似的结果。6 生物标志物面板可以为 pSjD 的分类提供一种新的非侵入性工具。