当前位置:
X-MOL 学术
›
J. Alloys Compd.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Advanced Engineering of Smart Nanomaterials: ZnWO4/CoWO4/g-C3N4 Heterojunction Photocatalysts for Environmental and Biomedical Application
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.jallcom.2024.178200 Balaji Parsauraman, Paramasivam Shanmugam, Nazar Riswana Barveen, Lalitha Gnanasekaran, Supakorn boonyuen, Nivetha Venkatesan, Pazhanivel Thanagvelu
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.jallcom.2024.178200 Balaji Parsauraman, Paramasivam Shanmugam, Nazar Riswana Barveen, Lalitha Gnanasekaran, Supakorn boonyuen, Nivetha Venkatesan, Pazhanivel Thanagvelu
The advanced engineering of smart nanomaterials has emerged as a promising approach to address critical challenges in environmental and medicinal applications. In this study, we present the design and synthesized multivariate ZnWO4/CoWO4/g-C3N4 nanocomposites using a straightforward simple one-step wet impregnation process, significantly boosting their performance in various photocatalytic and antibacterial applications. The synergistic combination of ZnWO4 and CoWO4 nanoparticles were anchored onto multiple active sites on the surface of g-C3N4 nanosheets. When compared to pristine g-C3N4 nanosheet, ZnWO4, CoWO4, and the binary ZnWO4/CoWO4 nanocomposite, the ternary ZnWO4/CoWO4/g-C3N4 nanocomposite exhibits superior antibacterial and photodegradation activity of methylene blue (MB) dye under visible light irradiation. The optimal ternary ZnWO4/CoWO4/g-C3N4 nanocomposite demonstrates a degradation efficiency of 94.6% after 120 min, additionally, the common bacterial pathogens, including Staphylococcus aureus (+Ve) and Escherichia coli (-Ve), were also tested. From mechanistic insights, the charge migration pathway, radical quenching study, stability and reusability analysis were observed in ternary ZnWO4/CoWO4/g-C3N4 nanocomposites. The significant participation of hydroxyl (⁎OH-) radicals during the photocatalytic MB degradation was verified by reactive oxygen species trapping experiments. Furthermore, the antibacterial activity was observed with the individual extracts and when they were used in lower to higher concentrations with ineffective antibiotics. The enhanced photocatalytic degradation and antibacterial properties of ternary ZnWO4/CoWO4/g-C3N4 nanocomposites can be attributed to the synergistic effects of strong charge migration and remarkable stability properties. Further research has shown that the synergistic role of ZnWO4/CoWO4/g-C3N4 nanocomposites significantly enhances their environmental and biological properties.
中文翻译:
智能纳米材料高级工程:用于环境和生物医学应用的 ZnWO4/CoWO4/g-C3N4 异质结光催化剂
智能纳米材料的先进工程已成为解决环境和医学应用中关键挑战的一种有前途的方法。在这项研究中,我们提出了使用简单简单的一步湿浸工艺设计和合成多变量 ZnWO4/CoWO4/g-C3N4 纳米复合材料,显着提高了它们在各种光催化和抗菌应用中的性能。ZnWO4 和 CoWO4 纳米颗粒的协同组合被锚定在 g-C3N4 纳米片表面的多个活性位点上。与原始的 g-C3N4 纳米片、ZnWO4、CoWO4 和二元 ZnWO4/CoWO4 纳米复合材料相比,三元 ZnWO4/CoWO4/g-C3N4 纳米复合材料在可见光照射下表现出优异的亚甲基蓝 (MB) 染料的抗菌和光降解活性。最佳的三元 ZnWO4/CoWO4/g-C3N4 纳米复合材料在 120 min 后降解效率为 94.6%,此外,还测试了常见的细菌病原体,包括金黄色葡萄球菌 (+Ve) 和大肠杆菌 (-Ve)。从机理角度,在三元 ZnWO4/CoWO4/g-C3N4 纳米复合材料中观察到电荷迁移途径、自由基猝灭研究、稳定性和可重用性分析。活性氧捕获实验验证了羟基 (⁎OH-) 自由基在光催化 MB 降解过程中的显着参与。 此外,在单独的提取物中观察到抗菌活性,当它们以低浓度到高浓度与无效抗生素一起使用时。三元 ZnWO4/CoWO4/g-C3N4 纳米复合材料增强的光催化降解和抗菌性能可归因于强电荷迁移和显著稳定性的协同效应。进一步的研究表明,ZnWO4/CoWO4/g-C3N4 纳米复合材料的协同作用显著增强了其环境和生物学特性。
更新日期:2024-12-19
中文翻译:
智能纳米材料高级工程:用于环境和生物医学应用的 ZnWO4/CoWO4/g-C3N4 异质结光催化剂
智能纳米材料的先进工程已成为解决环境和医学应用中关键挑战的一种有前途的方法。在这项研究中,我们提出了使用简单简单的一步湿浸工艺设计和合成多变量 ZnWO4/CoWO4/g-C3N4 纳米复合材料,显着提高了它们在各种光催化和抗菌应用中的性能。ZnWO4 和 CoWO4 纳米颗粒的协同组合被锚定在 g-C3N4 纳米片表面的多个活性位点上。与原始的 g-C3N4 纳米片、ZnWO4、CoWO4 和二元 ZnWO4/CoWO4 纳米复合材料相比,三元 ZnWO4/CoWO4/g-C3N4 纳米复合材料在可见光照射下表现出优异的亚甲基蓝 (MB) 染料的抗菌和光降解活性。最佳的三元 ZnWO4/CoWO4/g-C3N4 纳米复合材料在 120 min 后降解效率为 94.6%,此外,还测试了常见的细菌病原体,包括金黄色葡萄球菌 (+Ve) 和大肠杆菌 (-Ve)。从机理角度,在三元 ZnWO4/CoWO4/g-C3N4 纳米复合材料中观察到电荷迁移途径、自由基猝灭研究、稳定性和可重用性分析。活性氧捕获实验验证了羟基 (⁎OH-) 自由基在光催化 MB 降解过程中的显着参与。 此外,在单独的提取物中观察到抗菌活性,当它们以低浓度到高浓度与无效抗生素一起使用时。三元 ZnWO4/CoWO4/g-C3N4 纳米复合材料增强的光催化降解和抗菌性能可归因于强电荷迁移和显著稳定性的协同效应。进一步的研究表明,ZnWO4/CoWO4/g-C3N4 纳米复合材料的协同作用显著增强了其环境和生物学特性。