当前位置:
X-MOL 学术
›
J. Alloys Compd.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrochemical performance of Li1-xNaxNi0.8Al0.2O2 as symmetriccal electrode for low temperature ceramic fuel cells
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.jallcom.2024.178205 Yan Ma, Siwen Xu, Gang Chen, Kai Wei, Liao Yu, Mengjia Wang, Xinnuo Nan, Kai Yu, Shujiang Geng
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.jallcom.2024.178205 Yan Ma, Siwen Xu, Gang Chen, Kai Wei, Liao Yu, Mengjia Wang, Xinnuo Nan, Kai Yu, Shujiang Geng
This paper investigates the electrochemical performance of LixNa1-xNi0.8Al0.2 (x=0.1, 0.2, 0.3, 0.4, LNNA) with different ratios of Na doping as electrode materials for ceramic fuel cells. It is found that the maximum power density (MPD) of the ceramic fuel cells prepared by co-pressure method with LNNA as symmetrical electrodes and GDC as electrolyte gradually decreases with the increase of Na doping in LNNA in H2 at 550 oC. The MPD for the cell with LNNA-91 electrode reaches 718 mW·cm-2, while that of the cell with LNNA-64 electrode is 503 mW·cm-2. However, this MPD values still have strong competitiveness in the fuel cells operating at temperature around 550 oC. It was found that the LNNA anode is reduced by H2, generating LiOH/NaOH molten salts, which diffuse into the GDC electrolyte and form a "GDC-Li/Na compounds" composite electrolyte with exceptional ionic conductivity. This is the key factor contributing to the excellent electrochemical performance of these ceramic fuel cells. The increase of Na content in LNNA will destroy its phase structure and generate new phases such as NaCO3, resulting in the degradation of the electrode performance.Therefore, the doping amount of Na in LNNA needs to balance the cost and performance of the cell.
中文翻译:
Li1-xNaxNi0.8Al0.2O2 作为低温陶瓷燃料电池对称电极的电化学性能
本文研究了不同 Na 掺杂比例下 LixNa1-xNi0.8Al0.2 (x=0.1, 0.2, 0.3, 0.4, LNNA) 作为陶瓷燃料电池电极材料的电化学性能。研究发现,在 550 oC 时,以 LNNA 为对称电极,GDC 为电解质,随着 LNNA 中 Na 掺杂的增加,在 H2 中以 LNNA 为对称电极制备的陶瓷燃料电池的最大功率密度 (MPD) 逐渐降低。采用 LNNA-91 电极的电池的 MPD 达到 718mW·cm-2,而采用 LNNA-64 电极的电池的 MPD 为 503mW·cm-2。然而,这个 MPD 值在温度约为 550oC 的燃料电池中仍然具有很强的竞争力。研究发现,LNNA 阳极被 H2 还原,生成 LiOH/NaOH 熔盐,这些盐扩散到 GDC 电解质中,形成具有优异离子电导率的“GDC-Li/Na 化合物”复合电解质。这是促成这些陶瓷燃料电池具有优异电化学性能的关键因素。LNNA 中 Na 含量的增加会破坏其相结构并产生 NaCO3 等新相,导致电极性能下降。因此,LNNA 中 Na 的掺杂量需要平衡电池的成本和性能。
更新日期:2024-12-19
中文翻译:
Li1-xNaxNi0.8Al0.2O2 作为低温陶瓷燃料电池对称电极的电化学性能
本文研究了不同 Na 掺杂比例下 LixNa1-xNi0.8Al0.2 (x=0.1, 0.2, 0.3, 0.4, LNNA) 作为陶瓷燃料电池电极材料的电化学性能。研究发现,在 550 oC 时,以 LNNA 为对称电极,GDC 为电解质,随着 LNNA 中 Na 掺杂的增加,在 H2 中以 LNNA 为对称电极制备的陶瓷燃料电池的最大功率密度 (MPD) 逐渐降低。采用 LNNA-91 电极的电池的 MPD 达到 718mW·cm-2,而采用 LNNA-64 电极的电池的 MPD 为 503mW·cm-2。然而,这个 MPD 值在温度约为 550oC 的燃料电池中仍然具有很强的竞争力。研究发现,LNNA 阳极被 H2 还原,生成 LiOH/NaOH 熔盐,这些盐扩散到 GDC 电解质中,形成具有优异离子电导率的“GDC-Li/Na 化合物”复合电解质。这是促成这些陶瓷燃料电池具有优异电化学性能的关键因素。LNNA 中 Na 含量的增加会破坏其相结构并产生 NaCO3 等新相,导致电极性能下降。因此,LNNA 中 Na 的掺杂量需要平衡电池的成本和性能。