当前位置:
X-MOL 学术
›
J. Alloys Compd.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Incorporation of magnetic nanoparticles into polytartaric acid as a key for enhancing thermal conductivity
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.jallcom.2024.178209 George Ispas, Xenia Filip, Anja Caspari, Alexandrina Nan
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-12-19 , DOI: 10.1016/j.jallcom.2024.178209 George Ispas, Xenia Filip, Anja Caspari, Alexandrina Nan
This work set out to investigate how different concentrations and sizes of iron oxide magnetite nanoparticles affected the augmentation of thermal conductivity of a neoteric polytartaric acid crosslinked by 1,6-hexamethylene diisocyanate (HMDI). Various synthesis techniques, such as coprecipitation, oxidation of Fe(II) ions, and breakdown procedures, were employed to produce the magnetic nanoparticles. The structural and morphological features of the hitherto unknown crosslinked polytartaric acids were investigated using solid-state Nuclear Magnetic Resonance (ss-NMR), Fourier-transform infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). Magnetic composites were obtained by crosslinking polytartaric acid with HMDI in the presence of iron oxide magnetic nanoparticles. Their structural properties were investigated by FTIR spectroscopy. Additionally, the study delved into the magnetic measurements of these composites, which revealed superparamagnetic properties. The thermogravimetric analysis assessed the thermal stability of crosslinked polytartaric acid and its magnetic composites. The zeta potentials of crosslinked polytartaric acid and its magnetic composites turned out to be similar. The study also employed the transient plane source method to measure the through-plane thermal conductivity and diffusivity. As a result, the magnetic composite, based on crosslinked neoteric polytartaric acid and magnetic nanoparticles fillers synthesized by the decomposition method, exhibited a remarkable thermal conductivity of up to 0.8 W/(mK) at 50 wt% filler loading i.e. an increase of 515%.
中文翻译:
将磁性纳米颗粒掺入聚酒石酸中作为增强导热性的关键
这项工作旨在研究不同浓度和大小的氧化铁磁铁矿纳米颗粒如何影响由 1,6-六亚甲基二异氰酸酯 (HMDI) 交联的新体聚酒石酸的热导率增强。采用各种合成技术,例如共沉淀、Fe(II) 离子的氧化和击穿程序,来生产磁性纳米颗粒。使用固态核磁共振 (ss-NMR)、傅里叶变换红外光谱 (FTIR) 和扫描电子显微镜 (SEM) 研究了迄今为止未知的交联聚酒石酸的结构和形态特征。在氧化铁磁性纳米颗粒存在下,通过将聚酒石酸与 HMDI 交联获得磁性复合材料。通过 FTIR 光谱研究它们的结构特性。此外,该研究深入研究了这些复合材料的磁性测量,揭示了超顺磁性。热重分析评估了交联聚酒石酸及其磁性复合材料的热稳定性。交联聚酒石酸及其磁性复合材料的 zeta 电位相似。该研究还采用了瞬态平面源方法来测量平面通热导率和扩散率。结果,基于交联新晶聚酒石酸和通过分解法合成的磁性纳米颗粒填料的磁性复合材料在 50wt% 填料负载量下表现出高达 0.8W/(mK) 的显着导热率,即提高了 515%。
更新日期:2024-12-19
中文翻译:
将磁性纳米颗粒掺入聚酒石酸中作为增强导热性的关键
这项工作旨在研究不同浓度和大小的氧化铁磁铁矿纳米颗粒如何影响由 1,6-六亚甲基二异氰酸酯 (HMDI) 交联的新体聚酒石酸的热导率增强。采用各种合成技术,例如共沉淀、Fe(II) 离子的氧化和击穿程序,来生产磁性纳米颗粒。使用固态核磁共振 (ss-NMR)、傅里叶变换红外光谱 (FTIR) 和扫描电子显微镜 (SEM) 研究了迄今为止未知的交联聚酒石酸的结构和形态特征。在氧化铁磁性纳米颗粒存在下,通过将聚酒石酸与 HMDI 交联获得磁性复合材料。通过 FTIR 光谱研究它们的结构特性。此外,该研究深入研究了这些复合材料的磁性测量,揭示了超顺磁性。热重分析评估了交联聚酒石酸及其磁性复合材料的热稳定性。交联聚酒石酸及其磁性复合材料的 zeta 电位相似。该研究还采用了瞬态平面源方法来测量平面通热导率和扩散率。结果,基于交联新晶聚酒石酸和通过分解法合成的磁性纳米颗粒填料的磁性复合材料在 50wt% 填料负载量下表现出高达 0.8W/(mK) 的显着导热率,即提高了 515%。