当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hollow and solid combined double-shell nitrogen-doped carbon-Fe3C-Fe nanospheres with tunable shell thickness and magnetic component for enhanced electromagnetic wave absorption
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.apsusc.2024.162143
Xinyu Wang , Zhuo Cai , Yifei Wang , Yifei Ma , Zhaomin Tong , Mei Wang , Jonghwan Suhr , Liantuan Xiao , Suotang Jia , Xuyuan Chen
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.apsusc.2024.162143
Xinyu Wang , Zhuo Cai , Yifei Wang , Yifei Ma , Zhaomin Tong , Mei Wang , Jonghwan Suhr , Liantuan Xiao , Suotang Jia , Xuyuan Chen
![]() |
Previous research has fully demonstrated that the core–shell spherical structure can facilitate multiple reflection within the cavity and provide polarization relaxation at the heterogeneous interfaces. In this study, double-shell nitrogen-doped carbon-Fe3 C-Fe (NC-Fe3 C-Fe, referred to as CFF) nanospheres composed of hollow NC-Fe3 C and solid NC-Fe3 C/Fe nanospheres are synthesized in an interconnected three-dimensional structure. The double-shell is composed of nitrogen-doped carbon outer shells and Fe3 C inner shells, derived from the carbonization of polydopamine (PDA) and controllable etching of the Fe nanotemplates in the PDA@Fe. In this strategy, the carbon shells provide dielectric loss, and the Fe3 C and Fe contribute to magnetic loss, bringing about a magnetic-electric synergistic effect on effective electromagnetic wave absorption (EMA). By adjusting the thickness of the carbon shells and the etching time of the Fe, the CFF achieves a minimum reflection loss of −74.00 dB at a thickness of 1.91 mm, with an effective absorption bandwidth of 5.04 GHz. In addition, by the radar cross-section (RCS) scattering simulation, the RCS value at a scattering angle of 0° decreased by 32.06 dBm2 , confirming an excellent EMA capability in practical far-field applications. This study provides an effective strategy for the application of core–shell and double-shell structures in the EMA materials.
中文翻译:
空心和固体组合双壳氮掺杂碳-Fe3C-Fe 纳米球,具有可调壳层厚度和磁性成分,可增强电磁波吸收
以前的研究已经充分证明,核壳球形结构可以促进腔内的多重反射,并在非均质界面处提供极化弛豫。在本研究中,由空心 NC-Fe3C 和固体 NC-Fe3C/Fe 纳米球组成的双壳氮掺杂碳-Fe3C-Fe (NC-Fe3C-Fe,简称 CFF) 纳米球在互连的三维结构中合成。双壳层由氮掺杂碳外壳和 Fe3C 内壳组成,来源于聚多巴胺 (PDA) 的碳化和PDA@Fe中 Fe 纳米模板的可控刻蚀。在这种策略中,碳壳提供介电损耗,而 Fe3C 和 Fe 导致磁损耗,从而对有效电磁波吸收 (EMA) 产生磁电协同效应。通过调整碳壳的厚度和 Fe 的蚀刻时间,CFF 在 1.91 mm 的厚度上实现了 -74.00 dB 的最小反射损耗,有效吸收带宽为 5.04 GHz。此外,通过雷达散射截面 (RCS) 散射仿真,散射角为 0° 时的 RCS 值降低了 32.06 dBm2,证实了在实际远场应用中出色的 EMA 能力。本研究为核壳和双壳结构在 EMA 材料中的应用提供了一种有效的策略。
更新日期:2024-12-18
中文翻译:

空心和固体组合双壳氮掺杂碳-Fe3C-Fe 纳米球,具有可调壳层厚度和磁性成分,可增强电磁波吸收
以前的研究已经充分证明,核壳球形结构可以促进腔内的多重反射,并在非均质界面处提供极化弛豫。在本研究中,由空心 NC-Fe3C 和固体 NC-Fe3C/Fe 纳米球组成的双壳氮掺杂碳-Fe3C-Fe (NC-Fe3C-Fe,简称 CFF) 纳米球在互连的三维结构中合成。双壳层由氮掺杂碳外壳和 Fe3C 内壳组成,来源于聚多巴胺 (PDA) 的碳化和PDA@Fe中 Fe 纳米模板的可控刻蚀。在这种策略中,碳壳提供介电损耗,而 Fe3C 和 Fe 导致磁损耗,从而对有效电磁波吸收 (EMA) 产生磁电协同效应。通过调整碳壳的厚度和 Fe 的蚀刻时间,CFF 在 1.91 mm 的厚度上实现了 -74.00 dB 的最小反射损耗,有效吸收带宽为 5.04 GHz。此外,通过雷达散射截面 (RCS) 散射仿真,散射角为 0° 时的 RCS 值降低了 32.06 dBm2,证实了在实际远场应用中出色的 EMA 能力。本研究为核壳和双壳结构在 EMA 材料中的应用提供了一种有效的策略。