当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hollow and solid combined double-shell nitrogen-doped carbon-Fe3C-Fe nanospheres with tunable shell thickness and magnetic component for enhanced electromagnetic wave absorption
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.apsusc.2024.162143 Xinyu Wang, Zhuo Cai, Yifei Wang, Yifei Ma, Zhaomin Tong, Mei Wang, Jonghwan Suhr, Liantuan Xiao, Suotang Jia, Xuyuan Chen
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.apsusc.2024.162143 Xinyu Wang, Zhuo Cai, Yifei Wang, Yifei Ma, Zhaomin Tong, Mei Wang, Jonghwan Suhr, Liantuan Xiao, Suotang Jia, Xuyuan Chen
Previous research has fully demonstrated that the core–shell spherical structure can facilitate multiple reflection within the cavity and provide polarization relaxation at the heterogeneous interfaces. In this study, double-shell nitrogen-doped carbon-Fe3C-Fe (NC-Fe3C-Fe, referred to as CFF) nanospheres composed of hollow NC-Fe3C and solid NC-Fe3C/Fe nanospheres are synthesized in an interconnected three-dimensional structure. The double-shell is composed of nitrogen-doped carbon outer shells and Fe3C inner shells, derived from the carbonization of polydopamine (PDA) and controllable etching of the Fe nanotemplates in the PDA@Fe. In this strategy, the carbon shells provide dielectric loss, and the Fe3C and Fe contribute to magnetic loss, bringing about a magnetic-electric synergistic effect on effective electromagnetic wave absorption (EMA). By adjusting the thickness of the carbon shells and the etching time of the Fe, the CFF achieves a minimum reflection loss of −74.00 dB at a thickness of 1.91 mm, with an effective absorption bandwidth of 5.04 GHz. In addition, by the radar cross-section (RCS) scattering simulation, the RCS value at a scattering angle of 0° decreased by 32.06 dBm2, confirming an excellent EMA capability in practical far-field applications. This study provides an effective strategy for the application of core–shell and double-shell structures in the EMA materials.
中文翻译:
空心和固体组合双壳氮掺杂碳-Fe3C-Fe 纳米球,具有可调壳层厚度和磁性成分,可增强电磁波吸收
以前的研究已经充分证明,核壳球形结构可以促进腔内的多重反射,并在非均质界面处提供极化弛豫。在本研究中,由空心 NC-Fe 3 C 和固体 NC-Fe 3 C/Fe 纳米球组成的双壳氮掺杂碳-Fe 3 C-Fe (NC-Fe 3 C-Fe,简称 CFF) 纳米球在互连的三维结构中合成。双壳层由氮掺杂的碳外壳和 Fe 3 C 内壳层组成,来源于聚多巴胺 (PDA) 的碳化和PDA@Fe中 Fe 纳米模板的可控刻蚀。在这种策略中,碳壳提供介电损耗,而 Fe 3 C 和 Fe 导致磁损耗,从而对有效电磁波吸收 (EMA) 产生磁电协同效应。通过调整碳壳的厚度和 Fe 的蚀刻时间,CFF 在 1.91 mm 的厚度下实现了 − 74.00 dB 的最小反射损耗,有效吸收带宽为 5.04 GHz。此外,通过雷达散射截面 (RCS) 散射仿真,散射角为 0° 时的 RCS 值降低了 32.06 dBm 2 ,证实了在实际远场应用中出色的 EMA 能力。本研究为核壳和双壳结构在 EMA 材料中的应用提供了一种有效的策略。
更新日期:2024-12-21
中文翻译:
空心和固体组合双壳氮掺杂碳-Fe3C-Fe 纳米球,具有可调壳层厚度和磁性成分,可增强电磁波吸收
以前的研究已经充分证明,核壳球形结构可以促进腔内的多重反射,并在非均质界面处提供极化弛豫。在本研究中,由空心 NC-Fe 3 C 和固体 NC-Fe 3 C/Fe 纳米球组成的双壳氮掺杂碳-Fe 3 C-Fe (NC-Fe 3 C-Fe,简称 CFF) 纳米球在互连的三维结构中合成。双壳层由氮掺杂的碳外壳和 Fe 3 C 内壳层组成,来源于聚多巴胺 (PDA) 的碳化和PDA@Fe中 Fe 纳米模板的可控刻蚀。在这种策略中,碳壳提供介电损耗,而 Fe 3 C 和 Fe 导致磁损耗,从而对有效电磁波吸收 (EMA) 产生磁电协同效应。通过调整碳壳的厚度和 Fe 的蚀刻时间,CFF 在 1.91 mm 的厚度下实现了 − 74.00 dB 的最小反射损耗,有效吸收带宽为 5.04 GHz。此外,通过雷达散射截面 (RCS) 散射仿真,散射角为 0° 时的 RCS 值降低了 32.06 dBm 2 ,证实了在实际远场应用中出色的 EMA 能力。本研究为核壳和双壳结构在 EMA 材料中的应用提供了一种有效的策略。