Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Highly stable biochar-encapsulated CoTi@BC nanocatalysts for lignin hydrogenolysis
Journal of Catalysis ( IF 6.5 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.jcat.2024.115914 Bowen Luo, Zhipeng Tian, Riyang Shu, Chao Wang, Ying Chen, Jianping Liu, Yuhe Liao
Journal of Catalysis ( IF 6.5 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.jcat.2024.115914 Bowen Luo, Zhipeng Tian, Riyang Shu, Chao Wang, Ying Chen, Jianping Liu, Yuhe Liao
Valorization of renewable lignin toward value-added fuels and chemicals can improve the economies of biorefinery. However, maintaining catalyst stability and preventing metal aggregation under the certain conditions of lignin hydrogenolysis remains a key challenge. Herein, hydrogenolysis of corncob enzymatic lignin was investigated using biochar-encapsulated CoTi@BC catalysts at the reaction temperature of 250 °C. Co1Ti0.5@BC catalyst with the addition of Ti species outperforms Co@BC catalyst, resulting in 82.5 % lignin liquefaction degree and 23.7 wt% yield of monophenols. Besides, the catalytic stability of Co1Ti0.5@BC catalyst is outstanding in the lignin hydrogenolysis, where almost no activity loss occurred after four recycle runs. Catalyst characterization suggests that the addition of moderate amounts of Ti species changed the reduction temperature of Co species and the interaction between metal sites and carbon layer. The uniform distribution of Ti species improves the dispersion of Co metal particles, and the carbon layer can protect the surface of metal nanoparticles from oxidation, thus maintaining the stability and the activity of Co metal sites. Furthermore, the mechanism of lignin hydrogenolysis with CoTi@BC catalysts was investigated based on the results of benzyloxyphenol hydrogenolysis. These findings demonstrate the unique advantages of biochar-encapsulated metal particles for efficient C-O bond cleavage and offer valuable insights for advancing lignin valorization and sustainable biorefinery development.
中文翻译:
用于木质素氢解的高稳定性生物炭封装CoTi@BC纳米催化剂
将可再生木质素价值化为增值燃料和化学品可以提高生物精炼厂的经济性。然而,在木质素氢解的某些条件下保持催化剂稳定性并防止金属聚集仍然是一个关键挑战。在此,在 250 °C 的反应温度下,使用生物炭封装的 CoTi@BC 催化剂研究了玉米芯酶促木质素的氢解。 添加 Ti 物质的 Co1Ti0.5@BC 催化剂的性能优于 Co@BC 催化剂,导致单酚的木质素液化度为 82.5%,产率为 23.7 wt%。此外,Co1Ti0.5@BC催化剂在木质素加氢分解中表现出优异的催化稳定性,在四次循环运行后几乎没有发生活性损失。催化剂表征表明,适量的 Ti 种类的添加改变了 Co 种类的还原温度以及金属位点与碳层之间的相互作用。Ti 物种的均匀分布提高了 Co 金属颗粒的分散性,碳层可以保护金属纳米颗粒表面免受氧化,从而保持 Co 金属位点的稳定性和活性。此外,基于苄氧基苯酚加氢结果研究了木质素用CoTi@BC催化剂加氢的机理。这些发现证明了生物炭封装金属颗粒在高效 C-O 键裂解方面的独特优势,并为推进木质素增值和可持续生物精炼发展提供了有价值的见解。
更新日期:2024-12-19
中文翻译:
用于木质素氢解的高稳定性生物炭封装CoTi@BC纳米催化剂
将可再生木质素价值化为增值燃料和化学品可以提高生物精炼厂的经济性。然而,在木质素氢解的某些条件下保持催化剂稳定性并防止金属聚集仍然是一个关键挑战。在此,在 250 °C 的反应温度下,使用生物炭封装的 CoTi@BC 催化剂研究了玉米芯酶促木质素的氢解。 添加 Ti 物质的 Co1Ti0.5@BC 催化剂的性能优于 Co@BC 催化剂,导致单酚的木质素液化度为 82.5%,产率为 23.7 wt%。此外,Co1Ti0.5@BC催化剂在木质素加氢分解中表现出优异的催化稳定性,在四次循环运行后几乎没有发生活性损失。催化剂表征表明,适量的 Ti 种类的添加改变了 Co 种类的还原温度以及金属位点与碳层之间的相互作用。Ti 物种的均匀分布提高了 Co 金属颗粒的分散性,碳层可以保护金属纳米颗粒表面免受氧化,从而保持 Co 金属位点的稳定性和活性。此外,基于苄氧基苯酚加氢结果研究了木质素用CoTi@BC催化剂加氢的机理。这些发现证明了生物炭封装金属颗粒在高效 C-O 键裂解方面的独特优势,并为推进木质素增值和可持续生物精炼发展提供了有价值的见解。