当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Defect-enabled local high-temperature field within carbon to promote in-plane integration of an electrocatalyst for CO2-to-CO conversion
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-19 , DOI: 10.1039/d4ee04511d Yafang Zhang, Chang Yu, Xuedan Song, Xinyi Tan, Wenbin Li, Shuo Liu, Xiuqing Zhu, Song Cui, Yuanyang Xie, Jieshan Qiu
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-19 , DOI: 10.1039/d4ee04511d Yafang Zhang, Chang Yu, Xuedan Song, Xinyi Tan, Wenbin Li, Shuo Liu, Xiuqing Zhu, Song Cui, Yuanyang Xie, Jieshan Qiu
The efficient coupling of metal-containing complexes with carbon supports is a preferred method to maximize their intrinsic electrocatalytic activity. Herein, a defect-enabled local high-temperature field was precisely induced via microwave irradiation, allowing the in-plane integration of metal-containing complexes and carbon supports. In particular, under an energetic microwave input, N,N-dimethylformamide was ingeniously used to preset defect placeholders via the adsorption/anchoring of nitrogen species. Next, the created defects triggered concentrated electromagnetic wave attenuation, which further converted into Joule heating. Finally, these local high-temperature fields favored the spatial interlocking and topological conversion of Fe-macrocycles, as confirmed by multiscale spectroscopy, finite element analysis, and density functional theory. The compact in-plane microstructure endowed this electrocatalyst with a superior high turnover frequency of 241 000 h−1 for CO2-to-CO conversion. Moreover, the reaction could be operated in a scaled-up membrane electrode assembly with an effective electrode area of 5 × 5 cm2 at a total current density of 200 mA cm−2. This work provides a novel path for the precise fabrication of well-defined materials with excellent electrocatalytic activity.
中文翻译:
碳内缺陷启用的局部高温场,促进电催化剂的面内集成,用于 CO2 到 CO 的转化
含金属复合物与碳载体的高效偶联是最大限度地提高其本征电催化活性的首选方法。在此,通过微波照射精确诱导了缺陷启用的局部高温场,允许含金属复合物和碳载体的面内整合。特别是,在高能微波输入下,N,N-二甲基甲酰胺被巧妙地用于通过氮物质的吸附/锚定来预设缺陷占位符。接下来,产生的缺陷触发了集中的电磁波衰减,进一步转化为焦耳热。最后,这些局部高温场有利于 Fe 大环的空间互锁和拓扑转换,多尺度光谱学、有限元分析和密度泛函理论证实了这一点。紧凑的面内微观结构赋予了该电催化剂 241 000 h-1 的优异高周转频率,用于 CO2 到 CO 的转化。此外,该反应可以在有效电极面积为 5 × 5 cm2 的放大膜电极组件中进行,总电流密度为 200 mA cm-2。这项工作为精确制造具有优异电催化活性的明确材料提供了一条新途径。
更新日期:2024-12-19
中文翻译:
碳内缺陷启用的局部高温场,促进电催化剂的面内集成,用于 CO2 到 CO 的转化
含金属复合物与碳载体的高效偶联是最大限度地提高其本征电催化活性的首选方法。在此,通过微波照射精确诱导了缺陷启用的局部高温场,允许含金属复合物和碳载体的面内整合。特别是,在高能微波输入下,N,N-二甲基甲酰胺被巧妙地用于通过氮物质的吸附/锚定来预设缺陷占位符。接下来,产生的缺陷触发了集中的电磁波衰减,进一步转化为焦耳热。最后,这些局部高温场有利于 Fe 大环的空间互锁和拓扑转换,多尺度光谱学、有限元分析和密度泛函理论证实了这一点。紧凑的面内微观结构赋予了该电催化剂 241 000 h-1 的优异高周转频率,用于 CO2 到 CO 的转化。此外,该反应可以在有效电极面积为 5 × 5 cm2 的放大膜电极组件中进行,总电流密度为 200 mA cm-2。这项工作为精确制造具有优异电催化活性的明确材料提供了一条新途径。