当前位置:
X-MOL 学术
›
Chem. Soc. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Catalysis under electric-/magnetic-/electromagnetic-field coupling
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-12-19 , DOI: 10.1039/d4cs00869c Canyu Hu, Yueyue Dong, Qianqi Shi, Ran Long, Yujie Xiong
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-12-19 , DOI: 10.1039/d4cs00869c Canyu Hu, Yueyue Dong, Qianqi Shi, Ran Long, Yujie Xiong
The ultimate goal of catalysis is to control the cleavage and formation of chemical bonds at the molecular or even atomic level, enabling the customization of catalytic products. The essence of chemical bonding is the electromagnetic interaction between atoms, which makes it possible to directly manipulate the dynamic behavior of molecules and electrons in catalytic processes using external electric, magnetic and electromagnetic fields. In this tutorial review, we first introduce the feasibility and importance of field effects in regulating catalytic reaction processes and then outline the basic principles of electric-/magnetic-/electromagnetic-field interaction with matter, respectively. In each section, we further summarize the relevant important advances from two complementary perspectives: the macroscopic molecular motion (including translation, vibration and rotation) and the microscopic intramolecular electron state alteration (including spin polarization, transfer or excitation, and density of states redistribution). Finally, we discuss the challenges and opportunities for further development of catalysis under electric-/magnetic-/electromagnetic-field coupling.
中文翻译:
电/磁/电磁场耦合下的催化作用
催化的最终目标是在分子甚至原子水平上控制化学键的裂解和形成,从而实现催化产品的定制。化学键的本质是原子之间的电磁相互作用,这使得使用外部电场、磁场和电磁场在催化过程中直接操纵分子和电子的动态行为成为可能。在本教程中,我们首先介绍了场效应在调节催化反应过程中的可行性和重要性,然后分别概述了电/磁/电磁场与物质相互作用的基本原理。在每节中,我们从宏观分子运动(包括平移、振动和旋转)和微观分子内电子状态改变(包括自旋极化、转移或激发以及状态密度重新分布)两个互补的角度进一步总结了相关的重要进展。最后,我们讨论了电-磁-电磁场耦合下催化进一步发展的挑战和机遇。
更新日期:2024-12-19
中文翻译:
电/磁/电磁场耦合下的催化作用
催化的最终目标是在分子甚至原子水平上控制化学键的裂解和形成,从而实现催化产品的定制。化学键的本质是原子之间的电磁相互作用,这使得使用外部电场、磁场和电磁场在催化过程中直接操纵分子和电子的动态行为成为可能。在本教程中,我们首先介绍了场效应在调节催化反应过程中的可行性和重要性,然后分别概述了电/磁/电磁场与物质相互作用的基本原理。在每节中,我们从宏观分子运动(包括平移、振动和旋转)和微观分子内电子状态改变(包括自旋极化、转移或激发以及状态密度重新分布)两个互补的角度进一步总结了相关的重要进展。最后,我们讨论了电-磁-电磁场耦合下催化进一步发展的挑战和机遇。