当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ground States for Metals from Converged Coupled Cluster Calculations
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-12-17 , DOI: 10.1021/acs.jpclett.4c03134 Tobias Schäfer
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-12-17 , DOI: 10.1021/acs.jpclett.4c03134 Tobias Schäfer
Many-electron correlation methods offer a systematic approach to predicting material properties with high precision. However, practically attaining accurate ground-state properties for bulk metals presents significant challenges. In this work, we propose a novel scheme to reach the thermodynamic limit of the total ground-state energy of metals using coupled cluster theory. We demonstrate that the coupling between long-range and short-range contributions to the correlation energy is sufficiently weak, enabling us to restrict long-range contributions to low-energy excitations in a controllable way. Leveraging this insight, we calculated the surface energy of aluminum and platinum (111), providing numerical evidence that coupled cluster theory is well-suited for modeling metallic materials, particularly in surface science. Notably, our results exhibit convergence with respect to finite-size effects, basis-set size, and coupled cluster expansion, yielding excellent agreement with experimental data. This paves the way for more efficient coupled cluster calculations for large systems and a broader utilization of theory in realistic metallic models of materials.
中文翻译:
来自收敛耦合簇计算的金属基态
多电子相关方法提供了一种高精度预测材料特性的系统方法。然而,实际获得块状金属的准确基态特性是一项重大挑战。在这项工作中,我们提出了一种新的方案,利用耦合团簇理论达到金属总基态能量的热力学极限。我们证明了长程和短程对相关能的贡献之间的耦合足够弱,使我们能够以可控的方式限制长程对低能激发的贡献。利用这一见解,我们计算了铝和铂的表面能 (111),提供了数值证据,证明耦合簇理论非常适合建模金属材料,尤其是在表面科学中。值得注意的是,我们的结果在有限大小效应、基集大小和耦合簇扩展方面表现出收敛性,与实验数据非常吻合。这为大型系统更高效的耦合集群计算以及在材料的真实金属模型中更广泛地利用理论铺平了道路。
更新日期:2024-12-18
中文翻译:
来自收敛耦合簇计算的金属基态
多电子相关方法提供了一种高精度预测材料特性的系统方法。然而,实际获得块状金属的准确基态特性是一项重大挑战。在这项工作中,我们提出了一种新的方案,利用耦合团簇理论达到金属总基态能量的热力学极限。我们证明了长程和短程对相关能的贡献之间的耦合足够弱,使我们能够以可控的方式限制长程对低能激发的贡献。利用这一见解,我们计算了铝和铂的表面能 (111),提供了数值证据,证明耦合簇理论非常适合建模金属材料,尤其是在表面科学中。值得注意的是,我们的结果在有限大小效应、基集大小和耦合簇扩展方面表现出收敛性,与实验数据非常吻合。这为大型系统更高效的耦合集群计算以及在材料的真实金属模型中更广泛地利用理论铺平了道路。