Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Innovative Silica Acorn Core–Shell Nanostructures: Morphological Control and Applications in Chromatography
Langmuir ( IF 3.7 ) Pub Date : 2024-12-18 , DOI: 10.1021/acs.langmuir.4c04046 Khalid M. Alotaibi, Anfal A Alkhamees, A. Yacine Badjah Hadj Ahmed, Ahmad Aqel, Abdullah Mohammed Alswieleh
Langmuir ( IF 3.7 ) Pub Date : 2024-12-18 , DOI: 10.1021/acs.langmuir.4c04046 Khalid M. Alotaibi, Anfal A Alkhamees, A. Yacine Badjah Hadj Ahmed, Ahmad Aqel, Abdullah Mohammed Alswieleh
This study introduces the synthesis and characterization of advanced silica core–shell nanostructures, with an emphasis on the innovative Si-ACS (Silica Acorn Core–Shell) design and its modified counterparts. Employing the classic Stöber method, SiCore particles were first produced, followed by the creation of the acorn-like Si-ACS structures. A key aspect of this research is the exploration of the effects of CTAB and TEOS concentrations on the morphology and properties of the silica shells. The study reveals that surfactant concentration influences shell morphology from corn-like to uniformly thin structures, as well as the shell thickness. Specifically, increasing the CTAB concentration from 45.8 mM to 166.9 mM increased the silica shell thickness from 160 to 280 nm, demonstrating the significant impact of surfactant concentration on shell formation. Si-ACS particles exhibited a surface area of 55.54 m2/g and a pore volume of 0.64 cm3/g, as evidenced by BET measurements, indicating successful mesopore formation critical for catalytic and adsorption applications. The materials were further modified with cholesterol and tetraethyl pentaamine (TEPA), which was confirmed by FT-IR analysis. Additionally, the study demonstrates the application of these functionalized nanostructures as chromatographic columns. In particular, the dual-mode interactions of Si-ACS-CHOL-TEPA significantly improve the separation of phthalate esters, thereby highlighting the potential of these materials in advanced analytical and biotechnological applications.
中文翻译:
创新的二氧化硅橡子核壳纳米结构:形态控制及其在色谱中的应用
本研究介绍了先进的二氧化硅核壳纳米结构的合成和表征,重点介绍了创新的 Si-ACS(二氧化硅橡子核壳)设计及其改进的对应物。采用经典的 Stöber 方法,首先生产出 SiCore 颗粒,然后创建类似橡子的 Si-ACS 结构。这项研究的一个关键方面是探索 CTAB 和 TEOS 浓度对二氧化硅壳形态和性质的影响。研究表明,表面活性剂浓度会影响从玉米状结构到均匀薄结构的壳形态,以及壳的厚度。具体来说,将 CTAB 浓度从 45.8 mM 增加到 166.9 mM 使二氧化硅壳厚度从 160 nm 增加到 280 nm,证明了表面活性剂浓度对壳形成的显着影响。BET 测量证明 Si-ACS 颗粒的表面积为 55.54 m2/g,孔体积为 0.64 cm3/g,表明成功的中孔形成对催化和吸附应用至关重要。材料进一步用胆固醇和四乙基五胺 (TEPA) 改性,FT-IR 分析证实了这一点。此外,该研究还证明了这些功能化纳米结构作为色谱柱的应用。特别是,Si-ACS-CHOL-TEPA 的双模式相互作用显著改善了邻苯二甲酸酯的分离,从而突出了这些材料在高级分析和生物技术应用中的潜力。
更新日期:2024-12-18
中文翻译:
创新的二氧化硅橡子核壳纳米结构:形态控制及其在色谱中的应用
本研究介绍了先进的二氧化硅核壳纳米结构的合成和表征,重点介绍了创新的 Si-ACS(二氧化硅橡子核壳)设计及其改进的对应物。采用经典的 Stöber 方法,首先生产出 SiCore 颗粒,然后创建类似橡子的 Si-ACS 结构。这项研究的一个关键方面是探索 CTAB 和 TEOS 浓度对二氧化硅壳形态和性质的影响。研究表明,表面活性剂浓度会影响从玉米状结构到均匀薄结构的壳形态,以及壳的厚度。具体来说,将 CTAB 浓度从 45.8 mM 增加到 166.9 mM 使二氧化硅壳厚度从 160 nm 增加到 280 nm,证明了表面活性剂浓度对壳形成的显着影响。BET 测量证明 Si-ACS 颗粒的表面积为 55.54 m2/g,孔体积为 0.64 cm3/g,表明成功的中孔形成对催化和吸附应用至关重要。材料进一步用胆固醇和四乙基五胺 (TEPA) 改性,FT-IR 分析证实了这一点。此外,该研究还证明了这些功能化纳米结构作为色谱柱的应用。特别是,Si-ACS-CHOL-TEPA 的双模式相互作用显著改善了邻苯二甲酸酯的分离,从而突出了这些材料在高级分析和生物技术应用中的潜力。