Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Construction of a 0D–2D–2D Sandwich-like Ag/g-C3N4/MoS2 Photocatalyst with Bidirectional Electron Transfer Channels for Photocatalytic Hydrogen Evolution
Langmuir ( IF 3.7 ) Pub Date : 2024-12-17 , DOI: 10.1021/acs.langmuir.4c03489 Zibo An, Lizhou Yang, Wenqiang Dang, Qi Wang, Hao Li, Zhi-Feng Li
Langmuir ( IF 3.7 ) Pub Date : 2024-12-17 , DOI: 10.1021/acs.langmuir.4c03489 Zibo An, Lizhou Yang, Wenqiang Dang, Qi Wang, Hao Li, Zhi-Feng Li
Hydrogen (H2) production technology has sparked a boom in research aimed at alleviating environmental pollution and the pressure of nonrenewable energy sources. A key factor in this technology is the use of efficient photocatalysts. In this work, we successfully synthesized a 0D–2D–2D sandwich-like Ag/g-C3N4/MoS2 catalyst with bidirectional electron transfer channels via a calcination–hydrothermal method. The H2 evolution reaction of the Ag/g-C3N4/MoS2 catalyst under simulated solar light irradiation conditions revealed that it achieved a maximum H2 evolution rate of 1061.13 μmol·g–1·h–1, representing a 43.12-fold improvement over pristine g-C3N4. Based on systematic characterization with a combination of theoretical simulations, time-resolved photoluminescence, and electron spin resonance spectra, we demonstrate that the remarkable improvement in photocatalytic performance was ascribed to the bidirectional electron transport channels and 0D–2D–2D structure of the ternary catalyst. This unique structure, which was characterized by a large specific surface area, provided numerous active sites for photocatalytic reactions. Bidirectional electron transfer channels expedited the migration of photogenerated electrons reaching cocatalysts MoS2 and Ag from the conduction band of g-C3N4, consequently enhancing the photocatalytic activity. This study highlights the effectiveness of the bidirectional electron transfer channels in promoting charge carrier migration and suppressing charge carrier recombination for boosting photocatalytic hydrogen evolution and provides an efficient strategy for the actual application of g-C3N4-based photocatalysts.
中文翻译:
构建具有双向电子转移通道的 0D–2D–2D 三明治状 Ag/g-C3N4/MoS2 光催化剂用于光催化析氢
氢气 (H2) 生产技术引发了旨在减轻环境污染和不可再生能源压力的研究热潮。这项技术的一个关键因素是使用高效的光催化剂。在这项工作中,我们通过煅烧-水热法成功合成了具有双向电子转移通道的 0D–2D–2D 三明治状 Ag/g-C3N4/MoS2 催化剂。Ag/g-C3N4/MoS2催化剂在模拟太阳光照射条件下的H2析出反应表明,其H2最大析出速率为1061.13 μmol·g–1·h–1,比原始的g-C3N4提高了43.12倍。基于理论模拟、时间分辨光致发光和电子自旋共振光谱的系统表征,我们证明了光催化性能的显着改善归因于三元催化剂的双向电子传输通道和 0D-2D-2D 结构。这种独特的结构具有较大的比表面积,为光催化反应提供了许多活性位点。双向电子转移通道加速了光生电子从 g-C3N4 的导带到达助催化剂 MoS2 和 Ag 的迁移,从而增强了光催化活性。 本研究强调了双向电子转移通道在促进电荷载流子迁移和抑制电荷载流子复合以促进光催化析氢方面的有效性,并为 g-C3N4 基光催化剂的实际应用提供了有效的策略。
更新日期:2024-12-18
中文翻译:
构建具有双向电子转移通道的 0D–2D–2D 三明治状 Ag/g-C3N4/MoS2 光催化剂用于光催化析氢
氢气 (H2) 生产技术引发了旨在减轻环境污染和不可再生能源压力的研究热潮。这项技术的一个关键因素是使用高效的光催化剂。在这项工作中,我们通过煅烧-水热法成功合成了具有双向电子转移通道的 0D–2D–2D 三明治状 Ag/g-C3N4/MoS2 催化剂。Ag/g-C3N4/MoS2催化剂在模拟太阳光照射条件下的H2析出反应表明,其H2最大析出速率为1061.13 μmol·g–1·h–1,比原始的g-C3N4提高了43.12倍。基于理论模拟、时间分辨光致发光和电子自旋共振光谱的系统表征,我们证明了光催化性能的显着改善归因于三元催化剂的双向电子传输通道和 0D-2D-2D 结构。这种独特的结构具有较大的比表面积,为光催化反应提供了许多活性位点。双向电子转移通道加速了光生电子从 g-C3N4 的导带到达助催化剂 MoS2 和 Ag 的迁移,从而增强了光催化活性。 本研究强调了双向电子转移通道在促进电荷载流子迁移和抑制电荷载流子复合以促进光催化析氢方面的有效性,并为 g-C3N4 基光催化剂的实际应用提供了有效的策略。