当前位置: X-MOL 学术Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real-Time Monitoring of Metal Ions during the Molten Salt Electrolysis Process by Optical Emission Spectrometry Based on Microplasma
Analytical Chemistry ( IF 6.7 ) Pub Date : 2024-12-17 , DOI: 10.1021/acs.analchem.4c04004
Junhan Luo, Jingcui Liu, Qi Qing, Shuang Liu, Zhe Wang, Jing Chen, Yuexiang Lu

Molten salt electrolysis has been widely used in the production and separation of metals, but it still lacks in situ real-time analysis methods to monitor the electrolysis process. In this work, a microplasma spectroscopic real-time analysis (MIPECA) system is developed based on noncontact direct current (DC) glow discharge. With the MIPECA system, the atomic emission spectroscopy of Li and K could be obtained in situ in LiCl−KCl molten salt, and the impact of different operating conditions on spectral signals was investigated. Then, the characteristic spectra of ten representative elements, including alkali metals (Na, Cs), alkaline earth metals (Mg, Ca, Sr, Ba), transition metals (Ag, Cu, Ni), and lanthanide metals (Ce), were all successfully excited for qualitative analysis. Under the optimal operating conditions, quantitative analysis of Ag, Cs, and Sr was achieved with high sensitivity and low limits of detection (LOD) of about 0.063, 0.021, and 0.073 wt %, respectively. Finally, the electrolysis process of Ag+ in LiCl−KCl molten salt was real-time monitored by using this MIPECA system, showing its application potential in molten salt electrolysis.

中文翻译:


基于微等离子体的直读光谱法实时监测熔盐电解过程中的金属离子



熔盐电解已广泛应用于金属的生产和分离,但仍然缺乏原位实时分析方法来监测电解过程。在这项工作中,开发了一种基于非接触式直流 (DC) 辉光放电的微等离子体光谱实时分析 (MIPECA) 系统。利用 MIPECA 系统,可以在 LiCl−KCl 熔盐中原位获得 Li 和 K 的原子发射光谱,并研究了不同操作条件对光谱信号的影响。然后,成功激发碱金属 (Na, Cs)、碱土金属 (Mg, Ca, Sr, Ba)、过渡金属 (Ag, Cu, Ni) 和镧系金属 (Ce) 等 10 种代表性元素的特征谱图进行定性分析。在最佳操作条件下,Ag、Cs 和 Sr 的定量分析灵敏度高,检测限 (LOD) 低,分别约为 0.063、0.021 和 0.073 wt %。最后,利用该 MIPECA 系统实时监测了 Ag+ 在 LiCl−KCl 熔盐中的电解过程,显示了其在熔盐电解中的应用潜力。
更新日期:2024-12-18
down
wechat
bug