当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lanthanide Hydroxide as a New Platform for Efficient Electrocatalytic Alkaline Hydrogen Evolution
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-12-17 , DOI: 10.1021/acssuschemeng.4c06997 Ziyi Liu, Jiani Han, Yaodong Yu, Xiang Ji, Yujia Guan, Caixia Li, Jingqi Chi, Jianping Lai, Lei Wang
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-12-17 , DOI: 10.1021/acssuschemeng.4c06997 Ziyi Liu, Jiani Han, Yaodong Yu, Xiang Ji, Yujia Guan, Caixia Li, Jingqi Chi, Jianping Lai, Lei Wang
For the alkaline hydrogen evolution reaction (HER), the replacement of conventional precious metal electrocatalysts with lanthanide metal hydroxides (Ln(OH)3) with superior water dissociation and thermodynamic stability is essential for large-scale applications in green energy conversion and chemical synthesis. However, Ln(OH)3 has not yet been directly used as an HER electrocatalyst due to its strong adsorption of H* and the blockage of the active site caused by the highly oxygenophilic overbinding of OH– in alkaline conditions. Herein, we discover that engineering alkali metal ion doping of Yb(OH)3 loaded onto nickel foam (NF) allows for the optimal performance of K–Yb(OH)3@NF catalyst with exceptional activity with a low overpotential of 275 mV at 500 mA cm–2. Density functional theory (DFT) calculation shows that the strong interaction between the p and d orbitals of K and the d orbital of Yb better regulates the electronic structure, thus promoting water dissociation and weakening *H adsorption. Moreover, the introduction of the K site enhances the binding energy of the surrounding local *OH, breaking through the *OH blockage, thus accelerating the HER process. K–Yb(OH)3 operated stably as a cathode in an AEM electrolyzer for 1500 h at 1 A cm–2 without dissolution and reconstruction in alkaline conditions, far exceeding most reported transition metal-based catalysts. In addition, the application of K–Yb(OH)3 in an AEM electrolyzer steadily can achieve an energy consumption of 46.3 kWh kg–1 H2 and a projected cost of ∼US$ 0.926 kg–1 H2 (DOE’s target: $2 kg–1 of H2 by 2026).
中文翻译:
氢氧化镧系元素作为高效电催化碱性析氢的新平台
对于碱性析氢反应 (HER),用具有优异水解离和热力学稳定性的镧系金属氢氧化物 (Ln(OH)3) 取代传统的贵金属电催化剂对于绿色能源转化和化学合成的大规模应用至关重要。然而,Ln(OH)3 尚未直接用作 HER 电催化剂,因为它对 H* 具有很强的吸附性,并且在碱性条件下由于 OH– 的高亲氧过结合而阻塞了活性位点。在此,我们发现负载在泡沫镍 (NF) 上的 Yb(OH)3 的工程碱金属离子掺杂可实现 K-Yb(OH)3@NF催化剂的最佳性能,具有卓越的活性,在 500 mA cm–2 时具有 275 mV 的低过电位。密度泛函理论 (DFT) 计算表明,K 的 p 和 d 轨道与 Yb 的 d 轨道之间的强相互作用更好地调节了电子结构,从而促进了水的解离并削弱了 *H 的吸附。此外,K 位点的引入增强了周围局部 *OH 的结合能,突破了 *OH 的阻塞,从而加速了 HER 过程。K-Yb(OH)3 在 AEM 电解槽中作为阴极在 1 A cm–2 下稳定运行 1500 h,在碱性条件下没有溶解和重构,远超过大多数报道的过渡金属基催化剂。此外,K-Yb(OH)3 在 AEM 电解槽中的应用可以稳定地实现 46.3 kWh kg-1 H2 的能耗和约 0.926 美元 kg-1 H2 的预计成本(美国能源部的目标:到 2026 年 H2 的 2 美元 kg-1 美元)。
更新日期:2024-12-17
中文翻译:
氢氧化镧系元素作为高效电催化碱性析氢的新平台
对于碱性析氢反应 (HER),用具有优异水解离和热力学稳定性的镧系金属氢氧化物 (Ln(OH)3) 取代传统的贵金属电催化剂对于绿色能源转化和化学合成的大规模应用至关重要。然而,Ln(OH)3 尚未直接用作 HER 电催化剂,因为它对 H* 具有很强的吸附性,并且在碱性条件下由于 OH– 的高亲氧过结合而阻塞了活性位点。在此,我们发现负载在泡沫镍 (NF) 上的 Yb(OH)3 的工程碱金属离子掺杂可实现 K-Yb(OH)3@NF催化剂的最佳性能,具有卓越的活性,在 500 mA cm–2 时具有 275 mV 的低过电位。密度泛函理论 (DFT) 计算表明,K 的 p 和 d 轨道与 Yb 的 d 轨道之间的强相互作用更好地调节了电子结构,从而促进了水的解离并削弱了 *H 的吸附。此外,K 位点的引入增强了周围局部 *OH 的结合能,突破了 *OH 的阻塞,从而加速了 HER 过程。K-Yb(OH)3 在 AEM 电解槽中作为阴极在 1 A cm–2 下稳定运行 1500 h,在碱性条件下没有溶解和重构,远超过大多数报道的过渡金属基催化剂。此外,K-Yb(OH)3 在 AEM 电解槽中的应用可以稳定地实现 46.3 kWh kg-1 H2 的能耗和约 0.926 美元 kg-1 H2 的预计成本(美国能源部的目标:到 2026 年 H2 的 2 美元 kg-1 美元)。